
vcs-repo-mgr
Release 4.2

Apr 26, 2018

Contents

1 User documentation 3
1.1 vcs-repo-mgr: Version control repository manager . 3

2 API documentation 9
2.1 API documentation . 9

3 Change log 41
3.1 Changelog . 41

Python Module Index 53

i

ii

vcs-repo-mgr, Release 4.2

Welcome to the documentation of vcs-repo-mgr version 4.2! The following sections are available:

• User documentation

• API documentation

• Change log

Contents 1

vcs-repo-mgr, Release 4.2

2 Contents

CHAPTER 1

User documentation

The readme is the best place to start reading, it’s targeted at all users and documents the command line interface:

1.1 vcs-repo-mgr: Version control repository manager

The Python package vcs-repo-mgr provides a command line program and Python API to perform
common operations (in the context of packaging/deployment) on version control repositories. It’s currently tested on
Python 2.6, 2.7, 3.4, 3.5 and 3.6 on Linux and Mac OS X. Bazaar, Mercurial and Git repositories are supported.

• Installation

• Usage

– Updating repositories

– Finding revision numbers/ids

– Exporting revisions

• Future improvements

• Known issues

– Problematic dependencies

• Contact

• License

1.1.1 Installation

The vcs-repo-mgr package is available on PyPI which means installation should be as simple as:

3

https://travis-ci.org/xolox/python-vcs-repo-mgr
https://coveralls.io/r/xolox/python-vcs-repo-mgr?branch=master
http://en.wikipedia.org/wiki/Revision_control
http://bazaar.canonical.com/en/
http://mercurial.selenic.com/
http://git-scm.com/
https://pypi.python.org/pypi/vcs-repo-mgr

vcs-repo-mgr, Release 4.2

$ pip install vcs-repo-mgr

There’s actually a multitude of ways to install Python packages (e.g. the per user site-packages directory, virtual
environments or just installing system wide) and I have no intention of getting into that discussion here, so if this
intimidates you then read up on your options before returning to these instructions ;-).

You will also need Bazaar, Mercurial and/or Git installed (depending on the type of repositories you want to work
with). Here’s how you install them on Debian and Ubuntu based systems:

$ sudo apt-get install bzr mercurial git-core

1.1.2 Usage

There are two ways to use the vcs-repo-mgr package: As the command line program vcs-tool and as a Python API.
For details about the Python API please refer to the API documentation available on Read the Docs. The command
line interface is described below.

Usage: vcs-tool [OPTIONS] [ARGS]

Command line program to perform common operations (in the context of packaging/deployment) on version control
repositories. Supports Bazaar, Mercurial and Git repositories.

Supported options:

4 Chapter 1. User documentation

https://www.python.org/dev/peps/pep-0370/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://bazaar.canonical.com/en/
http://mercurial.selenic.com/
http://git-scm.com/
https://vcs-repo-mgr.readthedocs.org/en/latest/

vcs-repo-mgr, Release 4.2

Option Description
-r,
--repository=REPOSITORY

Select a repository to operate on by providing the name of a repository defined
in one of the configuration files ~/.vcs-repo-mgr.ini and /etc/vcs-repo-mgr.ini.
Alternatively the location of a remote repository can be given. The location
should be prefixed by the type of the repository (with a “+” in between) unless
the location ends in “.git” in which case the prefix is optional.

--rev,
--revision=REVISION

Select a revision to operate on. Accepts any string that’s supported by the
VCS system that manages the repository, which means you can provide branch
names, tag names, exact revision ids, etc. This option is used in combina-
tion with the --find-revision-number, --find-revision-id and
--export options.
If this option is not provided a default revision is selected: “last:1” for Bazaar
repositories, “master” for git repositories and “default” (not “tip”!) for Mercu-
rial repositories.

--release=RELEASE_ID Select a release to operate on. This option works in the same way as the
--revision option. Please refer to the vcs-repo-mgr documentation for de-
tails on “releases”.
Although release identifiers are based on branch or tag names they may not cor-
respond literally, this is why the release identifier you specify here is translated
to a global revision id before being passed to the VCS system.

-n,
--find-revision-number

Print the local revision number (an integer) of the revision given with the
--revision option. Revision numbers are useful as a build number or when
a simple, incrementing version number is required. Revision numbers should
not be used to unambiguously refer to a revision (use revision ids for that
instead). This option is used in combination with the --repository and
--revision options.

-i, --find-revision-id Print the global revision id (a string) of the revision given with the
--revision option. Global revision ids are useful to unambiguously refer
to a revision. This option is used in combination with the --repository
and --revision options.

--list-releases Print the identifiers of the releases in the repository given with the
--repository option. The release identifiers are printed on standard out-
put (one per line), ordered using natural order comparison.

--select-release=RELEASE_IDPrint the identifier of the newest release that is not newer than RELEASE_ID
in the repository given with the --repository option. The release identifier
is printed on standard output.

-s, --sum-revisions Print the summed revision numbers of multiple repository/revision pairs. The
repository/revision pairs are taken from the positional arguments to vcs-repo-
mgr.
This is useful when you’re building a package based on revisions from multiple
VCS repositories. By taking changes in all repositories into account when gen-
erating version numbers you can make sure that your version number is bumped
with every single change.

--vcs-control-field Print a line containing a Debian control file field and value. The field name will
be one of “Vcs-Bzr”, “Vcs-Hg” or “Vcs-Git”. The value will be the repository’s
remote location and the selected revision (separated by a “#” character).

-u, --update Create/update the local clone of a remote repository by pulling the latest
changes from the remote repository. This option is used in combination with
the --repository option.

-m, --merge-up Merge a change into one or more release branches and the default branch.
By default merging starts from the current branch. You can explicitly select
the branch where merging should start using the --rev, --revision and
--release options.
You can also start by merging a feature branch into the selected release branch
before merging the change up through later release branches and the default
branch. To do so you pass the name of the feature branch as a positional argu-
ment.
If the feature branch is located in a different repository you can prefix the lo-
cation of the repository to the name of the feature branch with a “#” token in
between, to delimit the location from the branch name.

-e, --export=DIRECTORY Export the contents of a specific revision of a repository to a local direc-
tory. This option is used in combination with the --repository and
--revision options.

-d, --find-directory Print the absolute pathname of a local repository. This option is used in combi-
nation with the --repository option.

-v, --verbose Increase logging verbosity (can be repeated).
-q, --quiet Decrease logging verbosity (can be repeated).
-h, --help Show this message and exit.

1.1. vcs-repo-mgr: Version control repository manager 5

vcs-repo-mgr, Release 4.2

The primary way to use the vcs-tool command requires you to create a configuration file:

$ cat > ~/.vcs-repo-mgr.ini << EOF
[coloredlogs]
type = git
local = /tmp/coloredlogs
remote = git@github.com:xolox/python-coloredlogs.git
EOF

Because the -r, --repository option accepts remote repository locations in addition to names it’s not actually
required to create a configuration file. Of course this depends on your use case(s).

Below are some examples of the command line interface. If you’re interested in using the Python API please refer to
the online documentation.

Updating repositories

If the configuration file defines a local and remote repository and the local repository doesn’t exist yet it will be created
the first time you update it:

$ vcs-tool --repository coloredlogs --update
2014-05-04 18:55:54 INFO Creating Git clone of git@github.com:xolox/python-
→˓coloredlogs.git at /tmp/coloredlogs ..
Cloning into bare repository '/tmp/coloredlogs'...
remote: Reusing existing pack: 96, done.
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 101 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (101/101), 28.11 KiB, done.
Resolving deltas: 100% (44/44), done.

Later runs will pull the latest changes instead of performing a full clone:

$ vcs-tool --repository coloredlogs --update
2014-05-04 18:55:56 INFO Updating Git clone of git@github.com:xolox/python-
→˓coloredlogs.git at /tmp/coloredlogs ..
From github.com:xolox/python-coloredlogs

* branch HEAD -> FETCH_HEAD

Finding revision numbers/ids

Revision numbers are integer numbers that increment with every added revision. They’re very useful during packag-
ing/deployment:

$ vcs-tool --repository coloredlogs --revision master --find-revision-number
24

Revision ids (hashes) are hexadecimal strings that uniquely identify revisions. They are useful to unambiguously refer
to a revision and its history (e.g while building a package you can embed the revision id as a hint about the origins of
the package):

$ vcs-tool --repository coloredlogs --revision master --find-revision-id
bce75c1eea88ebd40135cd45de716fe9591e348c

6 Chapter 1. User documentation

https://vcs-repo-mgr.readthedocs.org/en/latest/

vcs-repo-mgr, Release 4.2

Exporting revisions

By default the repositories created by vcs-repo-mgr do not contain a working tree, just the version control files (in Git
terminology this is called a “bare repository”). This has two reasons:

1. Bare repositories help conserve disk space. This is insignificant for small repositories, but on large repositories
it can make a noticeable difference. Especially if you’re using a lot of them :-)

2. Bare repositories enforce the principle that the working tree shouldn’t be used during packaging (instead you
should export the tree at a specific revision to a temporary directory and use that). This insistence on not using
the working tree during packaging has two reasons:

(a) The working tree can contain files which are not under version control. Such files should certainly not be
included in a package unintentionally.

(b) If the working tree of a repository is used, this makes it impossible to safely perform parallel builds from
the same repository (the builds can corrupt each other’s working tree).

This means that if you want to do something with the files in the repository you have to export a revision to a (tempo-
rary) directory:

$ vcs-tool --repository coloredlogs --export /tmp/coloredlogs-snapshot
2014-05-04 19:17:24 INFO Exporting revision master of /tmp/coloredlogs to /tmp/
→˓coloredlogs-snapshot ..

$ ls -l /tmp/coloredlogs-snapshot
total 28K
drwxrwxr-x 2 peter peter 4.0K May 3 14:31 coloredlogs
drwxrwxr-x 3 peter peter 4.0K May 3 14:31 vim
-rw-rw-r-- 1 peter peter 1.1K May 3 14:31 LICENSE.txt
-rw-rw-r-- 1 peter peter 56 May 3 14:31 MANIFEST.in
-rw-rw-r-- 1 peter peter 5.4K May 3 14:31 README.rst
-rwxrwxr-x 1 peter peter 1.1K May 3 14:31 setup.py

1.1.3 Future improvements

This section is currently a “braindump” which means I haven’t committed to any of these improvements, I’m just
thinking out loud ;-).

Improve interactive repository selection Two improvements for interactive usage of the vcs-tool program:

• Automatically load a repository’s configuration when a pathname is given that matches an entry in a
configuration file (right now you need to give the repository’s name in order to load its configuration).

• Do the obvious thing when no repository is specified on the command line but the working directory
matches a configured repository.

Wildcard matching in configuration files It might be interesting to support shell wildcard matching against local
directory names to apply a default configuration to a group of repositories?

Enable more extensive customization Right now the version control commands are hard coded and not easy to cus-
tomize for those cases where the existing API gets you 90% of where you want to be but makes that last 10%
impossible. Technically this is already possible through subclassing, but a more lightweight solution would
certainly be nice to have :-).

1.1.4 Known issues

This section documents known issues that users may run into.

1.1. vcs-repo-mgr: Version control repository manager 7

http://git-scm.com/

vcs-repo-mgr, Release 4.2

Problematic dependencies

Bazaar and Mercurial are both written in Python and available on PyPI and as such I included them in the installation
requirements of vcs-repo-mgr, because I couldn’t think of a good reason not to.

Adding support for Python 3 to vcs-repo-mgr made things more complicated because Bazaar and Mercurial didn’t
support Python 3, leading to installation errors. To cope with this problem the Bazaar and Mercurial requirements
were made conditional on the Python version:

• On Python 2 the Bazaar and Mercurial packages would be installed together with vcs-repo-mgr.

• On Python 3 the user was instead responsible for making sure that Bazaar and Mercurial were installed (for
example using system packages).

This works fine because vcs-repo-mgr only invokes Bazaar and Mercurial using the command line interfaces so it
doesn’t matter whether the version control system is using the same version of Python as vcs-repo-mgr.

Since then the installation of the Bazaar package has started failing on PyPy, unfortunately this time there is no
reliable and backwards compatible way to make the Bazaar dependency optional in wheel distributions due to bugs in
setuptools.

When I investigated support for environment markers that match Python implementations (refer to the link above) I
decided that instead of writing a setup script full of nasty and fragile hacks I’d rather just drop official (tested) support
for PyPy, as silly as the reason for it may be.

1.1.5 Contact

The latest version of vcs-repo-mgr is available on PyPI and GitHub. The documentation is hosted on Read the Docs
and includes a changelog. For bug reports please create an issue on GitHub. If you have questions, suggestions, etc.
feel free to send me an e-mail at peter@peterodding.com.

1.1.6 License

This software is licensed under the MIT license.

© 2018 Peter Odding.

8 Chapter 1. User documentation

https://github.com/html5lib/html5lib-python/issues/231#issuecomment-224022399
https://github.com/html5lib/html5lib-python/issues/231#issuecomment-224022399
https://pypi.python.org/pypi/vcs-repo-mgr
https://github.com/xolox/python-vcs-repo-mgr
https://vcs-repo-mgr.readthedocs.org/en/latest/
https://vcs-repo-mgr.readthedocs.org/en/latest/changelog.html
https://github.com/xolox/python-vcs-repo-mgr
mailto:peter@peterodding.com
http://en.wikipedia.org/wiki/MIT_License

CHAPTER 2

API documentation

The following API documentation is automatically generated from the source code:

2.1 API documentation

The following API documentation was automatically generated from the source code of vcs-repo-mgr 4.2:

• vcs_repo_mgr

– Getting started

– Common operations

• vcs_repo_mgr.backends

• vcs_repo_mgr.backends.bzr

• vcs_repo_mgr.backends.git

• vcs_repo_mgr.backends.hg

• vcs_repo_mgr.cli

• vcs_repo_mgr.exceptions

2.1.1 vcs_repo_mgr

Python API for the vcs-repo-mgr package.

Note: This module handles subprocess management using executor. This means that the
ExternalCommandFailed exception can be raised at (more or less) any point.

9

https://executor.readthedocs.io/en/latest/index.html#module-executor
https://executor.readthedocs.io/en/latest/index.html#executor.ExternalCommandFailed

vcs-repo-mgr, Release 4.2

Getting started

When using vcs-repo-mgr as a Python API the following top level entities should help you get started:

• The Repository class implements most of the functionality exposed by the vcs-repo-mgr project. In practice
you’ll use one of the subclasses which implement support for a specific VCS system (BzrRepo, GitRepo and
HgRepo).

– Repository objects construct Revision and Release objects so you’ll most likely be using these.

• The find_configured_repository() function constructs instances of Repository subclasses based
on configuration files. This is useful when you find yourself frequently instantiating the same Repository
instances and you’d rather refer to a repository name in your code than repeating the complete local and remote
locations everywhere in your code (this kind of duplication is bad after all :-).

• You can choose to directly instantiate BzrRepo, GitRepo and/or HgRepo instances or you can use
one of the helper functions that instantiate repository objects for you (coerce_repository() and
repository_factory()).

Common operations

The operations supported by Bazaar, Git and Mercurial have confusingly similar names except when they don’t (don’t
even get me started about subtly different semantics ;-) and so one challenge while developing vcs-repo-mgr has been
to come up with good names that adequately capture the semantics of operations (just for the record: I’m not claiming
that I always succeed on the first try :-).

In case you find yourself as confused as I have found myself at times, the following table lists common repository
operations supported by vcs-repo-mgr and their equivalent Bazaar, Git and Mercurial commands:

Python API (vcs-repo-mgr) Bazaar Git Mercurial
Repository.create() bzr init/branch git init/clone hg init/clone
Repository.pull() bzr pull git fetch/pull hg pull
Repository.push() bzr push git push hg push
Repository.checkout() (not implemented) git checkout hg update
Repository.commit() (not implemented) git commit hg commit
Repository.create_branch() (not implemented) git checkout -b hg branch
Repository.merge() (not implemented) git merge –no-commit hg merge

Note: As you can see from the table above I’m slowly but surely forgetting about keeping Bazaar support up to par, if
only because I don’t like the “lowest common denominator” approach where useful Git and Mercurial features aren’t
exposed because there’s no clear alternative for Bazaar. Also I work a lot less with Bazaar which means I’m lacking
knowledge; keeping Bazaar support up to par at all times drags down my progress significantly.

In contrast while there are of course a lot of small details that differ between Git and Mercurial, I’m still convinced
that it’s useful to hide these differences, because overall the two systems are so similar that it seems worth it to me (so
far :-).

vcs_repo_mgr.USER_CONFIG_FILE = '~/.vcs-repo-mgr.ini'
The location of the user-specific configuration file (a string, parsed using parse_path()).

vcs_repo_mgr.SYSTEM_CONFIG_FILE = '/etc/vcs-repo-mgr.ini'
The pathname of the system wide configuration file (a string).

vcs_repo_mgr.UPDATE_VARIABLE = 'VCS_REPO_MGR_UPDATE_LIMIT'
The name of the environment variable that’s used to rate limit repository updates (a string).

10 Chapter 2. API documentation

vcs-repo-mgr, Release 4.2

vcs_repo_mgr.KNOWN_RELEASE_SCHEMES = ('branches', 'tags')
The names of valid release schemes (a tuple of strings).

vcs_repo_mgr.BUNDLED_BACKENDS = ('bzr', 'git', 'hg')
The names of the version control modules provided by vcs-repo-mgr (a tuple of strings).

vcs_repo_mgr.REPOSITORY_TYPES = set([])
Available Repository subclasses (a set of type objects).

vcs_repo_mgr.HEX_PATTERN = <_sre.SRE_Pattern object>
Compiled regular expression pattern to match hexadecimal strings.

vcs_repo_mgr.coerce_author(value)
Coerce strings to Author objects.

Parameters value – A string or Author object.

Returns An Author object.

Raises ValueError when value isn’t a string or Author object.

vcs_repo_mgr.coerce_feature_branch(value)
Convert a string to a FeatureBranchSpec object.

Parameters value – A string or FeatureBranchSpec object.

Returns A FeatureBranchSpec object.

vcs_repo_mgr.coerce_repository(value, context=None)
Convert a string (taken to be a repository name or location) to a Repository object.

Parameters

• value – The name or location of a repository (a string) or a Repository object.

• context – An execution context created by executor.contexts (defaults to
executor.contexts.LocalContext).

Returns A Repository object.

Raises ValueError when the given value is not a string or a Repository object or if the value
is a string but doesn’t match the name of any configured repository and also can’t be parsed as
the location of a repository.

The coerce_repository() function creates Repository objects:

1. If the value is already a Repository object it is returned to the caller untouched.

2. If the value is accepted by find_configured_repository() then the resulting Repository
object is returned.

3. If the value is a string that starts with a known VCS type prefix (e.g. hg+https://bitbucket.org/
ianb/virtualenv) the prefix is removed from the string and a Repository object is returned:

• If the resulting string points to an existing local directory it will be used to set local.

• Otherwise the resulting string is used to set remote.

4. If the value is a string pointing to an existing local directory, the VCS type is inferred from the directory’s
contents and a Repository object is returned whose local property is set to the local directory.

5. If the value is a string that ends with .git (a common idiom for git repositories) a Repository object
is returned:

• If the value points to an existing local directory it will be used to set local.

• Otherwise the value is used to set remote.

2.1. API documentation 11

https://docs.python.org/2/library/stdtypes.html#set
https://docs.python.org/2/library/functions.html#type
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError
https://executor.readthedocs.io/en/latest/index.html#module-executor.contexts
https://executor.readthedocs.io/en/latest/index.html#executor.contexts.LocalContext
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError

vcs-repo-mgr, Release 4.2

vcs_repo_mgr.find_cache_directory(remote)
Find the directory where temporary local checkouts are to be stored.

Returns The absolute pathname of a directory (a string).

vcs_repo_mgr.find_configured_repository(name)
Find a version control repository defined by the user in a configuration file.

Parameters name – The name of the repository (a string).

Returns A Repository object.

Raises NoSuchRepositoryError when the given repository name doesn’t match any of the
configured repositories.

Raises AmbiguousRepositoryNameError when the given repository name is ambiguous (i.e.
it matches multiple repository names).

Raises UnknownRepositoryTypeError when a repository definition with an unknown type
is encountered.

The following configuration files are supported:

1. /etc/vcs-repo-mgr.ini

2. ~/.vcs-repo-mgr.ini

Repositories defined in the second file override repositories defined in the first. Here is an example of a reposi-
tory definition:

[vcs-repo-mgr]
type = git
local = ~/projects/vcs-repo-mgr
remote = git@github.com:xolox/python-vcs-repo-mgr.git
bare = true
release-scheme = tags
release-filter = .*

Three VCS types are currently supported: hg (mercurial is also accepted), git and bzr (bazaar is also
accepted).

vcs_repo_mgr.load_backends()
Load the backend modules bundled with vcs-repo-mgr.

Returns The value of REPOSITORY_TYPES.

When REPOSITORY_TYPES is empty this function will import each of the backend modules listed in
BUNDLED_BACKENDS before it accesses REPOSITORY_TYPES, to make sure that all of the Repository
subclasses bundled with vcs-repo-mgr are registered.

vcs_repo_mgr.normalize_name(name)
Normalize a repository name.

Parameters name – The name of a repository (a string).

Returns The normalized repository name (a string).

This makes sure that minor variations in character case and/or punctuation don’t disrupt the name matching in
find_configured_repository().

vcs_repo_mgr.repository_factory(vcs_type, **kw)
Instantiate a Repository object based on the given type and arguments.

Parameters

12 Chapter 2. API documentation

vcs-repo-mgr, Release 4.2

• vcs_type – One of the strings ‘bazaar’, ‘bzr’, ‘git’, ‘hg’ or ‘mercurial’ or a subclass of
Repository .

• kw – The keyword arguments to Repository.__init__().

Returns A Repository object.

Raises UnknownRepositoryTypeError when the given type is unknown.

vcs_repo_mgr.sum_revision_numbers(arguments)
Sum revision numbers of multiple repository/revision pairs.

Parameters arguments – A list of strings with repository names and revision strings.

Returns A single integer containing the summed revision numbers.

This is useful when you’re building a package based on revisions from multiple VCS repositories. By taking
changes in all repositories into account when generating version numbers you can make sure that your version
number is bumped with every single change.

class vcs_repo_mgr.limit_vcs_updates
Avoid duplicate repository updates.

This context manager uses an environment variable to ensure that each configured repository isn’t updated more
than once by the current process and/or subprocesses.

__enter__()
Set UPDATE_VARIABLE to the current time when entering the context.

__exit__(exc_type=None, exc_value=None, traceback=None)
Restore the previous value of UPDATE_VARIABLE when leaving the context.

class vcs_repo_mgr.Author(**kw)
An author for commits in version control repositories.

combined
The name and e-mail address of the author combined into one string (a string).

email
The e-mail address of the author (a string).

Note: The email property is a required_property. You are required to provide a value for
this property by calling the constructor of the class that defines the property with a keyword argument
named email (unless a custom constructor is defined, in this case please refer to the documentation of that
constructor). You can change the value of this property using normal attribute assignment syntax.

name
The name of the author (a string).

Note: The name property is a required_property. You are required to provide a value for this prop-
erty by calling the constructor of the class that defines the property with a keyword argument named name
(unless a custom constructor is defined, in this case please refer to the documentation of that constructor).
You can change the value of this property using normal attribute assignment syntax.

class vcs_repo_mgr.FeatureBranchSpec(**kw)
Simple and human friendly feature branch specifications.

expression
The feature branch specification provided by the user (a string).

2.1. API documentation 13

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property

vcs-repo-mgr, Release 4.2

The value of this property is parsed as follows:

• If expression contains two nonempty substrings separated by the character # it is split into two
parts where the first part is used to set location and the second part is used to set revision.

• Otherwise expression is interpreted as a revision without a location (in this case location will
be None).

Some examples to make things more concrete:

>>> from vcs_repo_mgr import FeatureBranchSpec
>>> FeatureBranchSpec(expression='https://github.com/xolox/python-vcs-repo-
→˓mgr.git#remote-feature-branch')
FeatureBranchSpec(expression='https://github.com/xolox/python-vcs-repo-mgr.git
→˓#remote-feature-branch',

location='https://github.com/xolox/python-vcs-repo-mgr.git',
revision='remote-feature-branch')

>>> FeatureBranchSpec(expression='local-feature-branch')
FeatureBranchSpec(expression='local-feature-branch',

location=None,
revision='local-feature-branch')

Note: The expression property is a required_property. You are required to provide a value
for this property by calling the constructor of the class that defines the property with a keyword argument
named expression (unless a custom constructor is defined, in this case please refer to the documentation of
that constructor). You can change the value of this property using normal attribute assignment syntax.

location
The location of the repository that contains revision (a string or None).

Note: The location property is a mutable_property. You can change the value of this property
using normal attribute assignment syntax. To reset it to its default (computed) value you can use del or
delattr().

revision
The name of the feature branch (a string).

Note: The revision property is a mutable_property. You can change the value of this property
using normal attribute assignment syntax. To reset it to its default (computed) value you can use del or
delattr().

class vcs_repo_mgr.RepositoryMeta(name, bases, dict)
Metaclass for automatic registration of Repository subclasses.

__init__(name, bases, dict)
Register a Repository subclass as soon as it is defined.

class vcs_repo_mgr.Repository(*args, **kw)
Abstract base class for managing version control repositories.

In general you should not use the Repository class directly, instead you should use the relevant subclass
(BzrRepo, GitRepo or HgRepo).

ALIASES = []
A list of strings with names for the repository type.

14 Chapter 2. API documentation

https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr

vcs-repo-mgr, Release 4.2

The repository_factory() function searches the ALIASES of all known subclasses of
Repository in order to map repository specifications like hg+https://bitbucket.org/ianb/
virtualenv to the correct Repository subclass.

repr_properties = ['local', 'remote']
The properties included in the output of repr().

classmethod contains_repository(context, directory)
Check whether the given directory contains a local repository.

Parameters directory – The pathname of a directory (a string).

Returns True if the directory contains a local repository, False otherwise.

By default contains_repository() just checks whether the directory reported by
get_vcs_directory() exists, but Repository subclasses can override this class method to
improve detection accuracy.

static get_vcs_directory(context, directory)
Get the pathname of the directory containing the version control metadata files.

Parameters

• context – An execution context created by executor.contexts.

• directory – The pathname of a directory (a string).

Returns The pathname of the directory containing the version control metadata files (a string).
In most cases this will be a subdirectory of the given directory, but it may also be the directory
itself.

This static method needs to be implemented by subclasses:

• If directory doesn’t exist this should not raise exceptions.

• If directory does exist its contents may influence the result of get_vcs_directory() in order to
cope with version control backends whose directory layout changes depending on whether they are
bare (I’m looking at you git).

author
The author for new commits (an Author object or None).

When you set this property the new value is coerced using coerce_author() (that is to say, strings
are automatically converted to an Author object).

The default value of this property is computed by find_author() (a method that needs to be imple-
mented subclasses).

Note: The author property is a custom_property. You can change the value of this property using
normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed)
and the result is cached. To clear the cached value you can use del or delattr().

bare
Whether the local repository should have a working tree or not (a boolean or None).

This property specifies whether the local repository should have a working tree or not:

• True means the local repository doesn’t need and shouldn’t have a working tree (in older versions of
vcs-repo-mgr this was the default and only choice).

• False means the local repository does need a working tree (for example because you want to create
new commits).

2.1. API documentation 15

https://docs.python.org/2/library/functions.html#repr
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://executor.readthedocs.io/en/latest/index.html#module-executor.contexts
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

vcs-repo-mgr, Release 4.2

The value of bare defaults to auto-detection using is_bare for repositories that already exist locally, if
only to preserve compatibility with versions of vcs-repo-mgr that didn’t have working tree support.

For repositories that don’t exist locally yet, bare defaults to True so that create() defaults to creating
repositories without a working tree.

If bare is explicitly set and the local clone already exists it will be checked by __init__() to make
sure that the values of bare and is_bare match. If they don’t an exception will be raised.

Note: The bare property is a mutable_property. You can change the value of this property
using normal attribute assignment syntax. To reset it to its default (computed) value you can use del or
delattr().

branches
A dictionary that maps branch names to Revision objects.

Here’s an example based on a mirror of the git project’s repository:

>>> from pprint import pprint
>>> from vcs_repo_mgr.backends.git import GitRepo
>>> repository = GitRepo(remote='https://github.com/git/git.git')
>>> pprint(repository.branches)
{'maint': Revision(repository=GitRepo(...), branch='maint', revision_id=
→˓'16018ae'),
'master': Revision(repository=GitRepo(...), branch='master', revision_id=
→˓'8440f74'),
'next': Revision(repository=GitRepo(...), branch='next', revision_id=
→˓'38e7071'),
'pu': Revision(repository=GitRepo(...), branch='pu', revision_id=
→˓'d61c1fa'),
'todo': Revision(repository=GitRepo(...), branch='todo', revision_id=
→˓'dea8a2d')}

compiled_filter
The result of re.compile() on release_filter.

If release_filter isn’t a string then it is assumed to be a compiled regular expression object and
returned directly.

Note: The compiled_filter property is a mutable_property. You can change the value of this
property using normal attribute assignment syntax. To reset it to its default (computed) value you can use
del or delattr().

context
An execution context created by executor.contexts.

Note: The context property is a custom_property. You can change the value of this property
using normal attribute assignment syntax. This property’s value is computed once (the first time it is
accessed) and the result is cached. To clear the cached value you can use del or delattr().

control_field
The name of the Debian control file field for the version control system (a string).

Note: The control_field property is a required_property. You are required to provide a value

16 Chapter 2. API documentation

https://docs.python.org/2/library/constants.html#True
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/re.html#re.compile
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://executor.readthedocs.io/en/latest/index.html#module-executor.contexts
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property

vcs-repo-mgr, Release 4.2

for this property by calling the constructor of the class that defines the property with a keyword argument
named control_field (unless a custom constructor is defined, in this case please refer to the documentation
of that constructor). You can change the value of this property using normal attribute assignment syntax.

current_branch
The name of the branch that’s currently checked out in the working tree (a string or None).

This property needs to be implemented by subclasses. It should not raise an exception when the current
branch can’t be determined.

default_pull_remote
The default remote for pulls (a Remote object or None).

default_push_remote
The default remote for pushes (a Remote object or None).

default_revision
The default revision of this version control system (a string).

This property needs to be implemented by subclasses.

Note: The default_revision property is a required_property. You are required to provide
a value for this property by calling the constructor of the class that defines the property with a keyword
argument named default_revision (unless a custom constructor is defined, in this case please refer to the
documentation of that constructor). You can change the value of this property using normal attribute
assignment syntax.

exists
True if the local repository exists, False otherwise.

friendly_name
A user friendly name for the version control system (a string).

Note: The friendly_name property is a required_property. You are required to provide a value
for this property by calling the constructor of the class that defines the property with a keyword argument
named friendly_name (unless a custom constructor is defined, in this case please refer to the documentation
of that constructor). You can change the value of this property using normal attribute assignment syntax.

is_bare
True if the repository has no working tree, False if it does.

This property needs to be implemented by subclasses.

is_clean
True if the working tree is clean, False otherwise.

This property needs to be implemented by subclasses.

known_remotes
Remote repositories connected to the local repository (a list of Remote objects).

This property needs to be implemented by subclasses.

last_updated
The date and time when vcs-repo-mgr last checked for updates (an integer).

Used internally by pull() when used in combination with limit_vcs_updates. The value is a
UNIX time stamp (0 for remote repositories that don’t have a local clone yet).

2.1. API documentation 17

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

vcs-repo-mgr, Release 4.2

last_updated_file
The pathname of the file used to mark the last successful update (a string).

local
The pathname of the local repository (a string).

Note: The local property is a custom_property. You can change the value of this property using
normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed)
and the result is cached. To clear the cached value you can use del or delattr().

merge_conflicts
The filenames of any files with merge conflicts (a list of strings).

This property needs to be implemented by subclasses.

ordered_branches
The values in branches ordered by branch name (a list of Revision objects).

The list is ordered by performing a natural order sort of branch names in ascending order (i.e. the first
value is the “oldest” branch and the last value is the “newest” branch).

ordered_releases
The values in releases ordered by release identifier (a list of Release objects).

The list is ordered by performing a natural order sort of release identifiers in ascending order (i.e. the first
value is the “oldest” release and the last value is the “newest” release).

ordered_tags
The values in tags ordered by tag name (a list of Revision objects).

The list is ordered by performing a natural order sort of tag names in ascending order (i.e. the first value is
the “oldest” tag and the last value is the “newest” tag).

release_branches
A dictionary that maps branch names to Release objects.

release_filter
The repository’s release filter (a string or regular expression, defaults to .*).

The value of release_filter should be a string containing a regular expression or the result of re.
compile(). The regular expression is used by Repository.releases to match tags or branches
that signify “releases”. If the regular expression contains a single capture group, the identifier of a
Release object is set to the substring captured by the capture group (instead of the complete tag or
branch name). This defaults to the regular expression .* which matches any branch or tag name.

Note: The release_filter property is a mutable_property. You can change the value of this
property using normal attribute assignment syntax. To reset it to its default (computed) value you can use
del or delattr().

release_scheme
The repository’s release scheme (a string, defaults to ‘tags’).

The value of release_scheme determines whether Repository.releases is based on
Repository.tags or Repository.branches. It should match one of the values in
KNOWN_RELEASE_SCHEMES. If an invalid value is set ValueError will be raised.

Note: The release_scheme property is a mutable_property. You can change the value of this

18 Chapter 2. API documentation

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://pypi.python.org/pypi/naturalsort
https://pypi.python.org/pypi/naturalsort
https://pypi.python.org/pypi/naturalsort
https://docs.python.org/2/library/re.html#re.compile
https://docs.python.org/2/library/re.html#re.compile
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property

vcs-repo-mgr, Release 4.2

property using normal attribute assignment syntax. To reset it to its default (computed) value you can use
del or delattr().

releases
A dictionary that maps release identifiers to Release objects.

Here’s an example based on a mirror of the git project’s repository which shows the last ten releases based
on tags, where each release identifier captures a tag without its ‘v’ prefix:

>>> from pprint import pprint
>>> from vcs_repo_mgr.backends.git import GitRepo
>>> repository = GitRepo(remote='https://github.com/git/git.git',
... release_scheme='tags',
... release_filter=r'^v(\d+(?:\.\d+)*)$')
>>> pprint(repository.ordered_releases[-10:])
[Release(revision=Revision(..., tag='v2.2.2', ...), identifier='2.2.2'),
Release(revision=Revision(..., tag='v2.3.0', ...), identifier='2.3.0'),
Release(revision=Revision(..., tag='v2.3.1', ...), identifier='2.3.1'),
Release(revision=Revision(..., tag='v2.3.2', ...), identifier='2.3.2'),
Release(revision=Revision(..., tag='v2.3.3', ...), identifier='2.3.3'),
Release(revision=Revision(..., tag='v2.3.4', ...), identifier='2.3.4'),
Release(revision=Revision(..., tag='v2.3.5', ...), identifier='2.3.5'),
Release(revision=Revision(..., tag='v2.3.6', ...), identifier='2.3.6'),
Release(revision=Revision(..., tag='v2.3.7', ...), identifier='2.3.7'),
Release(revision=Revision(..., tag='v2.4.0', ...), identifier='2.4.0')]

remote
The location of the remote repository (a string or None).

Note: The remote property is a mutable_property. You can change the value of this property
using normal attribute assignment syntax. To reset it to its default (computed) value you can use del or
delattr().

supports_working_tree
True if the repository supports a working tree, False otherwise.

This property needs to be implemented by subclasses.

tags
A dictionary that maps tag names to Revision objects.

Here’s an example based on a mirror of the git project’s repository:

>>> from pprint import pprint
>>> from vcs_repo_mgr.backends.git import GitRepo
>>> repository = GitRepo(remote='https://github.com/git/git.git')
>>> pprint(repository.tags)
{'v0.99': Revision(repository=GitRepo(...),

tag='v0.99',
revision_id='d6602ec5194c87b0fc87103ca4d67251c76f233a'),

'v0.99.1': Revision(repository=GitRepo(...),
tag='v0.99.1',
revision_id='f25a265a342aed6041ab0cc484224d9ca54b6f41'),

'v0.99.2': Revision(repository=GitRepo(...),
tag='v0.99.2',
revision_id='c5db5456ae3b0873fc659c19fafdde22313cc441'),

..., # dozens of tags omitted to keep this example short

2.1. API documentation 19

https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

vcs-repo-mgr, Release 4.2

'v2.3.6': Revision(repository=GitRepo(...),
tag='v2.3.6',
revision_id='8e7304597727126cdc52771a9091d7075a70cc31'),

'v2.3.7': Revision(repository=GitRepo(...),
tag='v2.3.7',
revision_id='b17db4d9c966de30f5445632411c932150e2ad2f'),

'v2.4.0': Revision(repository=GitRepo(...),
tag='v2.4.0',
revision_id='67308bd628c6235dbc1bad60c9ad1f2d27d576cc')}

vcs_directory
The pathname of the directory containing the version control metadata files (a string).

__init__(*args, **kw)
Initialize a Repository object.

Refer to the initializer of the superclass (PropertyManager) for details about argument handling.

During initialization ValueError can be raised for any of the following reasons:

• Neither local nor remote is specified.

• The local repository doesn’t exist and remote isn’t specified.

• The local repository already exists but the values of bare and is_bare don’t match.

• The release_scheme is invalid.

• The release_filter regular expression contains more than one capture group (if you need addi-
tional groups but without the capturing aspect use a non-capturing group).

add_files(*filenames, **kw)
Include added and/or removed files in the working tree in the next commit.

Parameters

• filenames – The filenames of the files to include in the next commit (zero or more
strings). If no arguments are given all untracked files are added.

• kw – Keyword arguments are ignored (instead of raising TypeError) to enable back-
wards compatibility with older versions of vcs-repo-mgr where the keyword argument all
was used.

checkout(revision=None, clean=False)
Update the working tree of the local repository to the specified revision.

Parameters

• revision – The revision to check out (a string, defaults to default_revision).

• clean – True to discard changes in the working tree, False otherwise.

commit(message, author=None)
Commit changes to tracked files in the working tree.

Parameters

• message – The commit message (a string).

• author – Override author (refer to coerce_author() for details on argument han-
dling).

create()
Create the local repository (if it doesn’t already exist).

20 Chapter 2. API documentation

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.PropertyManager
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError
https://docs.python.org/2/library/exceptions.html#exceptions.TypeError
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

vcs-repo-mgr, Release 4.2

Returns True if the local repository was just created, False if it already existed.

What create() does depends on the situation:

• When exists is True nothing is done.

• When the local repository doesn’t exist but a remote repository location is given, a clone of the
remote repository is created.

• When the local repository doesn’t exist and no remote repository has been specified then a new
local repository will be created.

When create() is responsible for creating the local repository it will make sure the bare option is
respected.

create_branch(branch_name)
Create a new branch based on the working tree’s revision.

Parameters branch_name – The name of the branch to create (a string).

This method automatically checks out the new branch, but note that the new branch may not actually exist
until a commit has been made on the branch.

create_release_branch(branch_name)
Create a new release branch.

Parameters branch_name – The name of the release branch to create (a string).

Raises The following exceptions can be raised:

• TypeError when release_scheme isn’t set to ‘branches’.

• ValueError when the branch name doesn’t match the configured release_filter
or no parent release branches are available.

This method automatically checks out the new release branch, but note that the new branch may not
actually exist until a commit has been made on the branch.

create_tag(tag_name)
Create a new tag based on the working tree’s revision.

Parameters tag_name – The name of the tag to create (a string).

delete_branch(branch_name, message=None, author=None)
Delete or close a branch in the local repository.

Parameters

• branch_name – The name of the branch to delete or close (a string).

• message – The message to use when closing the branch requires a commit (a string or
None, defaults to the string “Closing branch NAME”).

• author – Override author (refer to coerce_author() for details on argument han-
dling).

ensure_clean()
Make sure the working tree is clean (contains no changes to tracked files).

Raises WorkingTreeNotCleanError when the working tree contains changes to tracked
files.

ensure_exists()
Make sure the local repository exists.

Raises ValueError when the local repository doesn’t exist yet.

2.1. API documentation 21

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/exceptions.html#exceptions.TypeError
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError

vcs-repo-mgr, Release 4.2

ensure_hexadecimal_string(value, command=None)
Make sure the given value is a hexadecimal string.

Parameters

• value – The value to check (a string).

• command – The command that produced the value (a string or None).

Returns The validated hexadecimal string.

Raises ValueError when value is not a hexadecimal string.

ensure_release_scheme(expected_scheme)
Make sure the release scheme is correctly configured.

Parameters expected_scheme – The expected release scheme (a string).

Raises TypeError when release_scheme doesn’t match the expected release scheme.

ensure_working_tree()
Make sure the local repository has working tree support.

Raises MissingWorkingTreeError when the local repository doesn’t support a working
tree.

export(directory, revision=None)
Export the complete tree from the local version control repository.

Parameters

• directory – The directory where the tree should be exported (a string).

• revision – The revision to export (a string or None, defaults to
default_revision).

find_author()
Get the author information from the version control system.

Returns An Author object or None.

This method needs to be implemented by subclasses. It is expected to get the author information from the
version control system (if available).

find_branches()
Find information about the branches in the repository.

Returns A generator of Revision objects.

This method needs to be implemented by subclasses.

find_tags()
Find information about the tags in the repository.

Returns A generator of Revision objects.

This method needs to be implemented by subclasses.

find_remote(default=False, name=None, role=None)
Find a remote repository connected to the local repository.

Parameters

• default – True to only look for default remotes, False otherwise.

• name – The name of the remote to look for (a string or None).

• role – A role that the remote should have (a string or None).

22 Chapter 2. API documentation

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError
https://docs.python.org/2/library/exceptions.html#exceptions.TypeError
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

vcs-repo-mgr, Release 4.2

Returns A Remote object or None.

find_revision_id(revision=None)
Find the global revision id of the given revision.

Parameters revision – A reference to a revision, most likely the name of a branch (a string,
defaults to default_revision).

Returns The global revision id (a hexadecimal string).

This method needs to be implemented by subclasses.

find_revision_number(revision=None)
Find the local revision number of the given revision.

Parameters revision – A reference to a revision, most likely the name of a branch (a string,
defaults to default_revision).

Returns The local revision number (an integer).

This method needs to be implemented by subclasses:

• With each commit that is added to the repository, the local revision number needs to increase.

• Whether revision numbers start counting from zero or one is left to the version control system. To
make things more concrete: While Bazaar and git count from one, Mercurial counts from zero.

generate_control_field(revision=None)
Generate a Debian control file field referring for this repository and revision.

Parameters revision – A reference to a revision, most likely the name of a branch (a string,
defaults to default_revision).

Returns A tuple with two strings: The name of the field and the value.

This generates a Vcs-Bzr field for Bazaar repositories, a Vcs-Git field for Git repositories and a Vcs-Hg
field for Mercurial repositories. Here’s an example based on the public git repository of the vcs-repo-mgr
project:

>>> from vcs_repo_mgr import coerce_repository
>>> repository = coerce_repository('https://github.com/xolox/python-vcs-repo-
→˓mgr.git')
>>> repository.generate_control_field()
('Vcs-Git', 'https://github.com/xolox/python-vcs-repo-mgr.git
→˓#b617731b6c0ca746665f597d2f24b8814b137ebc')

get_add_files_command(*filenames)
Get the command to include added and/or removed files in the working tree in the next commit.

Parameters filenames – The filenames of the files to include in the next commit (zero or
more strings). If no arguments are given all untracked files are added.

Returns A list of strings.

This method needs to be implemented by subclasses.

get_checkout_command(revision, clean=False)
Get the command to update the working tree of the local repository.

Parameters

• revision – The revision to check out (a string, defaults to default_revision).

• clean – True to discard changes in the working tree, False otherwise.

This method needs to be implemented by subclasses.

2.1. API documentation 23

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

vcs-repo-mgr, Release 4.2

get_commit_command(message, author=None)
Get the command to commit changes to tracked files in the working tree.

Parameters

• message – The commit message (a string).

• author – An Author object or None.

Returns A list of strings.

This method needs to be implemented by subclasses.

get_create_command()
Get the command to create the local repository.

Returns A list of strings.

This method needs to be implemented by subclasses:

• When remote is set the command is expected to create a local repository based on the remote
repository.

• When remote isn’t set the command is expected to create an empty local repository.

• In either case bare should be respected.

get_create_branch_command(branch_name)
Get the command to create a new branch based on the working tree’s revision.

Parameters branch_name – The name of the branch to create (a string).

Returns A list of strings.

This method needs to be implemented by subclasses.

get_create_tag_command(tag_name)
Get the command to create a new tag based on the working tree’s revision.

Parameters tag_name – The name of the tag to create (a string).

Returns A list of strings.

get_delete_branch_command(branch_name, message=None, author=None)
Get the command to delete or close a branch in the local repository.

Parameters

• branch_name – The name of the branch to create (a string).

• message – The message to use when closing the branch requires a commit (a string,
defaults to the string “Closing branch NAME”).

• author – Override author (refer to coerce_author() for details on argument han-
dling).

Returns A list of strings.

This method needs to be implemented by subclasses.

get_export_command(directory, revision)
Get the command to export the complete tree from the local repository.

Parameters

• directory – The directory where the tree should be exported (a string).

• revision – The revision to export (a string, defaults to default_revision).

24 Chapter 2. API documentation

https://docs.python.org/2/library/constants.html#None

vcs-repo-mgr, Release 4.2

This method needs to be implemented by subclasses.

get_merge_command(revision)
Get the command to merge a revision into the current branch (without committing the result).

Parameters revision – The revision to merge in (a string, defaults to
default_revision).

This method needs to be implemented by subclasses.

get_pull_command(remote=None, revision=None)
Get the command to pull changes from a remote repository into the local repository.

Parameters

• remote – The location of a remote repository (a string or None).

• revision – A specific revision to pull (a string or None).

Returns A list of strings.

This method needs to be implemented by subclasses.

get_push_command(remote=None, revision=None)
Get the command to push changes from the local repository to a remote repository.

Parameters

• remote – The location of a remote repository (a string or None).

• revision – A specific revision to push (a string or None).

Returns A list of strings.

This method needs to be implemented by subclasses.

interactive_merge_conflict_handler(exception)
Give the operator a chance to interactively resolve merge conflicts.

Parameters exception – An ExternalCommandFailed object.

Returns True if the operator has interactively resolved any merge conflicts (and as such the
merge error doesn’t need to be propagated), False otherwise.

This method checks whether sys.stdin is connected to a terminal to decide whether interaction with
an operator is possible. If it is then an interactive terminal prompt is used to ask the operator to resolve the
merge conflict(s). If the operator confirms the prompt, the merge error is swallowed instead of propagated.
When sys.stdin is not connected to a terminal or the operator denies the prompt the merge error is
propagated.

is_feature_branch(branch_name)
Try to determine whether a branch name refers to a feature branch.

Parameters branch_name – The name of a branch (a string).

Returns True if the branch name appears to refer to a feature branch, False otherwise.

This method is used by merge_up() to determine whether the feature branch that was merged should be
deleted or closed.

If the branch name matches default_revision or one of the branch names of the releases then it
is not considered a feature branch, which means it won’t be closed.

mark_updated()
Mark a successful update so that last_updated can report it.

2.1. API documentation 25

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://executor.readthedocs.io/en/latest/index.html#executor.ExternalCommandFailed
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/sys.html#sys.stdin
https://docs.python.org/2/library/sys.html#sys.stdin
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

vcs-repo-mgr, Release 4.2

merge(revision=None)
Merge a revision into the current branch (without committing the result).

Parameters revision – The revision to merge in (a string or None, defaults to
default_revision).

Raises The following exceptions can be raised:

• MergeConflictError if the merge command reports an error and merge conflicts are
detected that can’t be (or haven’t been) resolved interactively.

• ExternalCommandFailed if the merge command reports an error but no merge con-
flicts are detected.

Refer to the documentation of merge_conflict_handler if you want to customize the handling of
merge conflicts.

merge_conflict_handler
The merge conflict handler (a callable, defaults to interactive_merge_conflict_handler()).

Note: The merge_conflict_handler property is a mutable_property. You can change the
value of this property using normal attribute assignment syntax. To reset it to its default (computed) value
you can use del or delattr().

merge_up(target_branch=None, feature_branch=None, delete=True, create=True)
Merge a change into one or more release branches and the default branch.

Parameters

• target_branch – The name of the release branch where merging of the feature branch
starts (a string or None, defaults to current_branch).

• feature_branch – The feature branch to merge in (any value accepted by
coerce_feature_branch()).

• delete – True (the default) to delete or close the feature branch after it is merged,
False otherwise.

• create – True to automatically create the target branch when it doesn’t exist yet,
False otherwise.

Returns If feature_branch is given the global revision id of the feature branch is returned,
otherwise the global revision id of the target branch (before any merges performed by
merge_up()) is returned. If the target branch is created by merge_up() and fea-
ture_branch isn’t given then None is returned.

Raises The following exceptions can be raised:

• TypeError when target_branch and current_branch are both None.

• ValueError when the given target branch doesn’t exist (based on branches) and
create is False.

• ExternalCommandFailed if a command fails.

pull(remote=None, revision=None)
Pull changes from a remote repository into the local repository.

Parameters

• remote – The location of a remote repository (a string or None).

• revision – A specific revision to pull (a string or None).

26 Chapter 2. API documentation

https://docs.python.org/2/library/constants.html#None
https://executor.readthedocs.io/en/latest/index.html#executor.ExternalCommandFailed
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/exceptions.html#exceptions.TypeError
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError
https://docs.python.org/2/library/constants.html#False
https://executor.readthedocs.io/en/latest/index.html#executor.ExternalCommandFailed
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

vcs-repo-mgr, Release 4.2

If used in combination with limit_vcs_updates this won’t perform redundant updates.

push(remote=None, revision=None)
Push changes from the local repository to a remote repository.

Parameters

• remote – The location of a remote repository (a string or None).

• revision – A specific revision to push (a string or None).

Warning: Depending on the version control backend the push command may fail when there are no
changes to push. No attempt has been made to make this behavior consistent between implementations
(although the thought has crossed my mind and I’ll likely revisit this in the future).

release_to_branch(release_id)
Shortcut to translate a release identifier to a branch name.

Parameters release_id – A Release.identifier value (a string).

Returns A branch name (a string).

Raises TypeError when release_scheme isn’t ‘branches’.

release_to_tag(release_id)
Shortcut to translate a release identifier to a tag name.

Parameters release_id – A Release.identifier value (a string).

Returns A tag name (a string).

Raises TypeError when release_scheme isn’t ‘tags’.

select_release(highest_allowed_release)
Select the newest release that is not newer than the given release.

Parameters highest_allowed_release – The identifier of the release that sets the upper
bound for the selection (a string).

Returns The identifier of the selected release (a string).

Raises NoMatchingReleasesError when no matching releases are found.

update(remote=None)
Alias for pull() to enable backwards compatibility.

update_context()
Try to ensure that external commands are executed in the local repository.

What update_context() does depends on whether the directory given by local exists:

• If local exists then the working directory of context will be set to local. This is to ensure that
version control commands are run inside of the intended version control repository.

• If local doesn’t exist then the working directory of context is cleared. This avoids external
commands from failing due to an invalid (non existing) working directory.

class vcs_repo_mgr.Release(**kw)
Release objects are revisions that specify a software “release”.

Most version control repositories are used to store software projects and most software projects have the concept
of “releases”: Specific versions of a software project that have been given a human and machine readable
version number (in one form or another). Release objects exist to capture this concept in a form that is

2.1. API documentation 27

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/exceptions.html#exceptions.TypeError
https://docs.python.org/2/library/exceptions.html#exceptions.TypeError

vcs-repo-mgr, Release 4.2

concrete enough to be generally useful while being abstract enough to be used in various ways (because every
software project has its own scheme for releases).

By default the Release objects created by Repository.releases are based on Repository.
tags, but using Repository.release_scheme you can specify that releases should be based on
Repository.branches instead. Additionally you can use Repository.release_filter to specify
a regular expression that will be used to distinguish valid releases from other tags/branches.

revision
The revision that the release relates to (a Revision object).

Note: The revision property is a required_property. You are required to provide a value for
this property by calling the constructor of the class that defines the property with a keyword argument
named revision (unless a custom constructor is defined, in this case please refer to the documentation of
that constructor). You can change the value of this property using normal attribute assignment syntax.

identifier
The name of the tag or branch (a string).

If a Repository.release_filter containing a single capture group is used this identifier is set to
the captured substring instead of the complete tag or branch name.

Note: The identifier property is a required_property. You are required to provide a value
for this property by calling the constructor of the class that defines the property with a keyword argument
named identifier (unless a custom constructor is defined, in this case please refer to the documentation of
that constructor). You can change the value of this property using normal attribute assignment syntax.

class vcs_repo_mgr.Remote(**kw)
A remote repository connected to a local repository.

default
True if this is a default remote repository, False otherwise.

Note: The default property is a required_property. You are required to provide a value for
this property by calling the constructor of the class that defines the property with a keyword argument
named default (unless a custom constructor is defined, in this case please refer to the documentation of
that constructor). You can change the value of this property using normal attribute assignment syntax.

location
The location of the remote repository (a string).

Note: The location property is a required_property. You are required to provide a value for
this property by calling the constructor of the class that defines the property with a keyword argument
named location (unless a custom constructor is defined, in this case please refer to the documentation of
that constructor). You can change the value of this property using normal attribute assignment syntax.

name
The name of the remote repository (a string or None).

Note: The name property is a mutable_property. You can change the value of this property
using normal attribute assignment syntax. To reset it to its default (computed) value you can use del or

28 Chapter 2. API documentation

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del

vcs-repo-mgr, Release 4.2

delattr().

repository
The local repository (a Repository object).

Note: The repository property is a custom_property. You are required to provide a value for
this property by calling the constructor of the class that defines the property with a keyword argument
named repository (unless a custom constructor is defined, in this case please refer to the documentation of
that constructor). You can change the value of this property using normal attribute assignment syntax.

roles
The roles of the remote repository (a list of of strings).

Currently the roles ‘pull’ and ‘push’ are supported.

Note: The roles property is a required_property. You are required to provide a value for
this property by calling the constructor of the class that defines the property with a keyword argument
named roles (unless a custom constructor is defined, in this case please refer to the documentation of that
constructor). You can change the value of this property using normal attribute assignment syntax.

class vcs_repo_mgr.Revision(**kw)
Revision objects represent a specific revision in a Repository .

branch
The name of the branch in which the revision exists (a string or None).

When this property is not available its value will be None.

Note: The branch property is a mutable_property. You can change the value of this property
using normal attribute assignment syntax. To reset it to its default (computed) value you can use del or
delattr().

repository
The local repository that contains the revision (a Repository object).

Note: The repository property is a custom_property. You are required to provide a value for
this property by calling the constructor of the class that defines the property with a keyword argument
named repository (unless a custom constructor is defined, in this case please refer to the documentation of
that constructor). You can change the value of this property using normal attribute assignment syntax.

revision_id
The global revision id of the revision (a string containing a hexadecimal hash).

Global revision ids are comparable between local and remote repositories, which makes them useful to
unambiguously refer to a revision and its history.

This property is always available.

Note: The revision_id property is a required_property. You are required to provide a value
for this property by calling the constructor of the class that defines the property with a keyword argument

2.1. API documentation 29

https://docs.python.org/2/library/functions.html#delattr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property

vcs-repo-mgr, Release 4.2

named revision_id (unless a custom constructor is defined, in this case please refer to the documentation
of that constructor). You can change the value of this property using normal attribute assignment syntax.

revision_number
The local revision number of the revision (an integer or None).

Local revision numbers are integers that increment with each commit. This makes them useful as a build
number or when a simple, incrementing version number is required. They should not be used to unam-
biguously refer to a revision (use revision_id for that instead).

When this property is not available its value will be None.

Note: The revision_number property is a custom_property. You can change the value of this
property using normal attribute assignment syntax. This property’s value is computed once (the first time
it is accessed) and the result is cached. To clear the cached value you can use del or delattr().

tag
The name of the tag associated to the revision (a string or None).

When this property is not available its value will be None.

Note: The tag property is a mutable_property. You can change the value of this property us-
ing normal attribute assignment syntax. To reset it to its default (computed) value you can use del or
delattr().

2.1.2 vcs_repo_mgr.backends

Namespace for the version control backends supported by vcs-repo-mgr.

The following backend modules are available:

• vcs_repo_mgr.backends.bzr

• vcs_repo_mgr.backends.git

• vcs_repo_mgr.backends.hg

2.1.3 vcs_repo_mgr.backends.bzr

Support for Bazaar version control repositories.

class vcs_repo_mgr.backends.bzr.BzrRepo(*args, **kw)
Manage Bazaar version control repositories.

classmethod contains_repository(context, directory)
Check whether the given directory contains a local repository.

static get_vcs_directory(context, directory)
Get the pathname of the directory containing the version control metadata files.

control_field
The name of the Debian control file field for Bazaar repositories (the string ‘Vcs-Bzr’).

30 Chapter 2. API documentation

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property
https://docs.python.org/2/reference/simple_stmts.html#del
https://docs.python.org/2/library/functions.html#delattr

vcs-repo-mgr, Release 4.2

Note: The control_field property is a required_property. You are required to provide a value
for this property by calling the constructor of the class that defines the property with a keyword argument
named control_field (unless a custom constructor is defined, in this case please refer to the documentation
of that constructor). You can change the value of this property using normal attribute assignment syntax.

default_revision
The default revision for Bazaar repositories (the string ‘last:1’).

Note: The default_revision property is a required_property. You are required to provide
a value for this property by calling the constructor of the class that defines the property with a keyword
argument named default_revision (unless a custom constructor is defined, in this case please refer to the
documentation of that constructor). You can change the value of this property using normal attribute
assignment syntax.

friendly_name
A user friendly name for the version control system (the string ‘Bazaar’).

is_bare
True if the repository has no working tree, False if it does.

The value of this property is computed by checking whether the .bzr/checkout directory exists (it
doesn’t exist in Bazaar repositories created using bzr branch --no-tree ...).

is_clean
True if the working tree is clean, False otherwise.

known_remotes
The names of the configured remote repositories (a list of Remote objects).

supports_working_tree
The opposite of bare (a boolean).

find_author()
Get the author information from the version control system.

find_branches()
Find information about the branches in the repository.

Bazaar repository support doesn’t support branches so this method logs a warning message and returns an
empty list. Consider using tags instead.

find_revision_id(revision=None)
Find the global revision id of the given revision.

find_revision_number(revision=None)
Find the local revision number of the given revision.

Note: Bazaar has the concept of dotted revision numbers:

For revisions which have been merged into a branch, a dotted notation is used (e.g., 3112.1.5).
Dotted revision numbers have three numbers. The first number indicates what mainline revision
change is derived from. The second number is the branch counter. There can be many branches
derived from the same revision, so they all get a unique number. The third number is the number
of revisions since the branch started. For example, 3112.1.5 is the first branch from revision
3112, the fifth revision on that branch.

2.1. API documentation 31

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

vcs-repo-mgr, Release 4.2

(From http://doc.bazaar.canonical.com/bzr.2.6/en/user-guide/zen.html#
understanding-revision-numbers)

However we really just want to give a bare integer to our callers. It doesn’t have to be globally accurate,
but it should increase as new commits are made. Below is the equivalent of the git implementation for
Bazaar.

find_tags()
Find information about the tags in the repository.

Note: The bzr tags command reports tags pointing to non-existing revisions as ? but doesn’t provide
revision ids. We can get the revision ids using the bzr tags --show-ids command but this command
doesn’t mark tags pointing to non-existing revisions. We combine the output of both because we want all
the information.

get_add_files_command(*filenames)
Get the command to include added and/or removed files in the working tree in the next commit.

get_commit_command(message, author=None)
Get the command to commit changes to tracked files in the working tree.

get_create_command()
Get the command to create the local repository.

get_create_tag_command(tag_name)
Get the command to create a new tag based on the working tree’s revision.

get_export_command(directory, revision)
Get the command to export the complete tree from the local repository.

get_pull_command(remote=None, revision=None)
Get the command to pull changes from a remote repository into the local repository.

get_push_command(remote=None, revision=None)
Get the command to push changes from the local repository to a remote repository.

update_context()
Make sure Bazaar respects the configured author.

This method first calls Repository.update_context() and then it sets the $BZR_EMAIL envi-
ronment variable based on the value of author (but only if author was set by the caller).

This is a workaround for a weird behavior of Bazaar that I’ve observed when running under Python 2.6:
The bzr commit --author command line option is documented but it doesn’t prevent Bazaar from
nevertheless reporting the following error:

bzr: ERROR: Unable to determine your name.
Please, set your name with the 'whoami' command.
E.g. bzr whoami "Your Name <name@example.com>"

2.1.4 vcs_repo_mgr.backends.git

Support for git version control repositories.

class vcs_repo_mgr.backends.git.GitRepo(*args, **kw)
Manage git version control repositories.

32 Chapter 2. API documentation

http://doc.bazaar.canonical.com/bzr.2.6/en/user-guide/zen.html#understanding-revision-numbers
http://doc.bazaar.canonical.com/bzr.2.6/en/user-guide/zen.html#understanding-revision-numbers

vcs-repo-mgr, Release 4.2

classmethod contains_repository(context, directory)
Check whether the given directory contains a local repository.

static get_vcs_directory(context, directory)
Get the pathname of the directory containing the version control metadata files.

control_field
The name of the Debian control file field for git repositories (the string ‘Vcs-Git’).

Note: The control_field property is a required_property. You are required to provide a value
for this property by calling the constructor of the class that defines the property with a keyword argument
named control_field (unless a custom constructor is defined, in this case please refer to the documentation
of that constructor). You can change the value of this property using normal attribute assignment syntax.

current_branch
The name of the branch that’s currently checked out in the working tree (a string or None).

default_revision
The default revision for git repositories (the string ‘master’).

Note: The default_revision property is a required_property. You are required to provide
a value for this property by calling the constructor of the class that defines the property with a keyword
argument named default_revision (unless a custom constructor is defined, in this case please refer to the
documentation of that constructor). You can change the value of this property using normal attribute
assignment syntax.

friendly_name
A user friendly name for the version control system (the string ‘git’).

Note: The friendly_name property is a required_property. You are required to provide a value
for this property by calling the constructor of the class that defines the property with a keyword argument
named friendly_name (unless a custom constructor is defined, in this case please refer to the documentation
of that constructor). You can change the value of this property using normal attribute assignment syntax.

is_bare
True if the repository has no working tree, False if it does.

The value of this property is computed by running the git config --get core.bare command.

is_clean
True if the working tree (and index) is clean, False otherwise.

The implementation of GitRepo.is_clean checks whether git diff reports any differences. This
command has several variants:

1. git diff shows the difference between the index and working tree.

2. git diff --cached shows the difference between the last commit and index.

3. git diff HEAD shows the difference between the last commit and working tree.

The implementation of GitRepo.is_clean uses the third command (git diff HEAD) in an at-
tempt to hide the existence of git’s index from callers that are trying to write code that works with Git and
Mercurial using the same Python API.

2.1. API documentation 33

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

vcs-repo-mgr, Release 4.2

known_remotes
The names of the configured remote repositories (a list of Remote objects).

merge_conflicts
The filenames of any files with merge conflicts (a list of strings).

supports_working_tree
The opposite of bare (a boolean).

expand_branch_name(name)
Expand branch names to their unambiguous form.

Parameters name – The name of a local or remote branch (a string).

Returns The unambiguous form of the branch name (a string).

This internal method is used by methods like find_revision_id() and
find_revision_number() to detect and expand remote branch names into their unambiguous
form which is accepted by commands like git rev-parse and git rev-list --count.

find_author()
Get the author information from the version control system.

find_branches()
Find information about the branches in the repository.

find_branches_raw()
Find information about the branches in the repository.

find_revision_id(revision=None)
Find the global revision id of the given revision.

find_revision_number(revision=None)
Find the local revision number of the given revision.

find_tags()
Find information about the tags in the repository.

get_add_files_command(*filenames)
Get the command to include added and/or removed files in the working tree in the next commit.

get_checkout_command(revision, clean=False)
Get the command to update the working tree of the local repository.

get_commit_command(message, author=None)
Get the command to commit changes to tracked files in the working tree.

get_create_branch_command(branch_name)
Get the command to create a new branch based on the working tree’s revision.

get_create_tag_command(tag_name)
Get the command to create a new tag based on the working tree’s revision.

get_create_command()
Get the command to create the local repository.

get_delete_branch_command(branch_name, message=None, author=None)
Get the command to delete or close a branch in the local repository.

get_export_command(directory, revision)
Get the command to export the complete tree from the local repository.

get_merge_command(revision)
Get the command to merge a revision into the current branch (without committing the result).

34 Chapter 2. API documentation

vcs-repo-mgr, Release 4.2

get_pull_command(remote=None, revision=None)
Get the command to pull changes from a remote repository into the local repository.

When you pull a specific branch using git, the default behavior is to pull the change sets from the remote
branch into the local repository and merge them into the currently checked out branch.

What Mercurial does is to pull the change sets from the remote branch into the local repository and create
a local branch whose contents mirror those of the remote branch. Merging is left to the operator.

In my opinion the default behavior of Mercurial is more sane and predictable than the default behavior of
git and so GitRepo tries to emulate the default behavior of Mercurial.

When a specific revision is pulled, the revision is assumed to be a branch name and git is instructed to pull
the change sets from the remote branch into a local branch with the same name.

Warning: The logic described above will undoubtedly break when revision is given but is not a branch
name. I’d fix this if I knew how to, but I don’t. . .

get_push_command(remote=None, revision=None)
Get the command to push changes from the local repository to a remote repository.

2.1.5 vcs_repo_mgr.backends.hg

Support for Mercurial version control repositories.

class vcs_repo_mgr.backends.hg.HgRepo(*args, **kw)
Manage Mercurial version control repositories.

static get_vcs_directory(context, directory)
Get the pathname of the directory containing the version control metadata files.

control_field
The name of the Debian control file field for Mercurial repositories (the string ‘Vcs-Hg’).

Note: The control_field property is a required_property. You are required to provide a value
for this property by calling the constructor of the class that defines the property with a keyword argument
named control_field (unless a custom constructor is defined, in this case please refer to the documentation
of that constructor). You can change the value of this property using normal attribute assignment syntax.

current_branch
The name of the branch that’s currently checked out in the working tree (a string or None).

default_revision
The default revision for Mercurial repositories (the string ‘default’).

Note: The default_revision property is a required_property. You are required to provide
a value for this property by calling the constructor of the class that defines the property with a keyword
argument named default_revision (unless a custom constructor is defined, in this case please refer to the
documentation of that constructor). You can change the value of this property using normal attribute
assignment syntax.

friendly_name
A user friendly name for the version control system (the string ‘Mercurial’).

2.1. API documentation 35

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#None
https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property

vcs-repo-mgr, Release 4.2

Note: The friendly_name property is a required_property. You are required to provide a value
for this property by calling the constructor of the class that defines the property with a keyword argument
named friendly_name (unless a custom constructor is defined, in this case please refer to the documentation
of that constructor). You can change the value of this property using normal attribute assignment syntax.

is_bare
True if the repository has no working tree, False if it does.

The value of this property is computed by running the hg id command to check whether the special
global revision id 000000000000 is reported.

is_clean
True if the working tree is clean, False otherwise.

known_remotes
The names of the configured remote repositories (a list of Remote objects).

merge_conflicts
The filenames of any files with merge conflicts (a list of strings).

supports_working_tree
Always True for Mercurial repositories.

find_author()
Get the author information from the version control system.

find_branches()
Find the branches in the Mercurial repository.

Returns A generator of Revision objects.

Note: Closed branches are not included.

find_revision_id(revision=None)
Find the global revision id of the given revision.

find_revision_number(revision=None)
Find the local revision number of the given revision.

find_tags()
Find information about the tags in the repository.

get_add_files_command(*filenames)
Get the command to include added and/or removed files in the working tree in the next commit.

get_checkout_command(revision, clean=False)
Get the command to update the working tree of the local repository.

get_commit_command(message, author=None)
Get the command to commit changes to tracked files in the working tree.

This method uses the hg remove --after to match the semantics of git commit --all (which
is _not_ the same as hg commit --addremove) however hg remove --after is _very_ verbose
(it comments on every existing file in the repository) and it ignores the --quiet option. This explains
why I’ve decided to silence the standard error stream (though I feel I may regret this later).

get_create_branch_command(branch_name)
Get the command to create a new branch based on the working tree’s revision.

36 Chapter 2. API documentation

https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True

vcs-repo-mgr, Release 4.2

get_create_tag_command(tag_name)
Get the command to create a new tag based on the working tree’s revision.

get_create_command()
Get the command to create the local repository.

get_delete_branch_command(branch_name, message, author)
Get the command to delete or close a branch in the local repository.

get_export_command(directory, revision)
Get the command to export the complete tree from the local repository.

get_merge_command(revision)
Get the command to merge a revision into the current branch (without committing the result).

get_pull_command(remote=None, revision=None)
Get the command to pull changes from a remote repository into the local repository.

get_push_command(remote=None, revision=None)
Get the command to push changes from the local repository to a remote repository.

2.1.6 vcs_repo_mgr.cli

Usage: vcs-tool [OPTIONS] [ARGS]

Command line program to perform common operations (in the context of packaging/deployment) on version control
repositories. Supports Bazaar, Mercurial and Git repositories.

Supported options:

2.1. API documentation 37

vcs-repo-mgr, Release 4.2

Option Description
-r,
--repository=REPOSITORY

Select a repository to operate on by providing the name of a repository defined
in one of the configuration files ~/.vcs-repo-mgr.ini and /etc/vcs-repo-mgr.ini.
Alternatively the location of a remote repository can be given. The location
should be prefixed by the type of the repository (with a “+” in between) unless
the location ends in “.git” in which case the prefix is optional.

--rev,
--revision=REVISION

Select a revision to operate on. Accepts any string that’s supported by the
VCS system that manages the repository, which means you can provide branch
names, tag names, exact revision ids, etc. This option is used in combina-
tion with the --find-revision-number, --find-revision-id and
--export options.
If this option is not provided a default revision is selected: “last:1” for Bazaar
repositories, “master” for git repositories and “default” (not “tip”!) for Mercu-
rial repositories.

--release=RELEASE_ID Select a release to operate on. This option works in the same way as the
--revision option. Please refer to the vcs-repo-mgr documentation for de-
tails on “releases”.
Although release identifiers are based on branch or tag names they may not cor-
respond literally, this is why the release identifier you specify here is translated
to a global revision id before being passed to the VCS system.

-n,
--find-revision-number

Print the local revision number (an integer) of the revision given with the
--revision option. Revision numbers are useful as a build number or when
a simple, incrementing version number is required. Revision numbers should
not be used to unambiguously refer to a revision (use revision ids for that
instead). This option is used in combination with the --repository and
--revision options.

-i, --find-revision-id Print the global revision id (a string) of the revision given with the
--revision option. Global revision ids are useful to unambiguously refer
to a revision. This option is used in combination with the --repository
and --revision options.

--list-releases Print the identifiers of the releases in the repository given with the
--repository option. The release identifiers are printed on standard out-
put (one per line), ordered using natural order comparison.

--select-release=RELEASE_IDPrint the identifier of the newest release that is not newer than RELEASE_ID
in the repository given with the --repository option. The release identifier
is printed on standard output.

-s, --sum-revisions Print the summed revision numbers of multiple repository/revision pairs. The
repository/revision pairs are taken from the positional arguments to vcs-repo-
mgr.
This is useful when you’re building a package based on revisions from multiple
VCS repositories. By taking changes in all repositories into account when gen-
erating version numbers you can make sure that your version number is bumped
with every single change.

--vcs-control-field Print a line containing a Debian control file field and value. The field name will
be one of “Vcs-Bzr”, “Vcs-Hg” or “Vcs-Git”. The value will be the repository’s
remote location and the selected revision (separated by a “#” character).

-u, --update Create/update the local clone of a remote repository by pulling the latest
changes from the remote repository. This option is used in combination with
the --repository option.

-m, --merge-up Merge a change into one or more release branches and the default branch.
By default merging starts from the current branch. You can explicitly select
the branch where merging should start using the --rev, --revision and
--release options.
You can also start by merging a feature branch into the selected release branch
before merging the change up through later release branches and the default
branch. To do so you pass the name of the feature branch as a positional argu-
ment.
If the feature branch is located in a different repository you can prefix the lo-
cation of the repository to the name of the feature branch with a “#” token in
between, to delimit the location from the branch name.

-e, --export=DIRECTORY Export the contents of a specific revision of a repository to a local direc-
tory. This option is used in combination with the --repository and
--revision options.

-d, --find-directory Print the absolute pathname of a local repository. This option is used in combi-
nation with the --repository option.

-v, --verbose Increase logging verbosity (can be repeated).
-q, --quiet Decrease logging verbosity (can be repeated).
-h, --help Show this message and exit.

38 Chapter 2. API documentation

vcs-repo-mgr, Release 4.2

vcs_repo_mgr.cli.main()
The command line interface of the vcs-tool program.

vcs_repo_mgr.cli.print_directory(repository)
Report the local directory of a repository to standard output.

vcs_repo_mgr.cli.print_revision_number(repository, revision)
Report the revision number of the given revision to standard output.

vcs_repo_mgr.cli.print_revision_id(repository, revision)
Report the revision id of the given revision to standard output.

vcs_repo_mgr.cli.print_selected_release(repository, release_id)
Report the identifier of the given release to standard output.

vcs_repo_mgr.cli.print_releases(repository)
Report the identifiers of all known releases of the given repository to standard output.

vcs_repo_mgr.cli.print_summed_revisions(arguments)
Report the summed revision numbers for the given arguments to standard output.

vcs_repo_mgr.cli.print_vcs_control_field(repository, revision)
Report the VCS control field for the given repository and revision to standard output.

2.1.7 vcs_repo_mgr.exceptions

Custom exception types raised by the vcs-repo-mgr package.

When vcs-repo-mgr encounters known errors it will raise an exception. Most of these exceptions have special types
that capture the type of error so that the Python except statement can be used to handle different types of errors in
different ways.

exception vcs_repo_mgr.exceptions.VcsRepoMgrError
Base class for exceptions directly raised by vcs_repo_mgr.

exception vcs_repo_mgr.exceptions.AmbiguousRepositoryNameError
Exception raised when an ambiguous repository name is encountered.

Raised by find_configured_repository() when the given repository name is ambiguous (i.e. it
matches multiple repository names).

exception vcs_repo_mgr.exceptions.NoMatchingReleasesError
Exception raised when no matching releases are found.

Raised by select_release() when no matching releases are found in the repository.

exception vcs_repo_mgr.exceptions.NoSuchRepositoryError
Exception raised when a repository by the given name doesn’t exist.

Raised by find_configured_repository() when the given repository name doesn’t match any of the
configured repositories.

exception vcs_repo_mgr.exceptions.UnknownRepositoryTypeError
Exception raised when a repository has an unknown type configured.

Raised by find_configured_repository()when it encounters a repository definition with an unknown
type.

exception vcs_repo_mgr.exceptions.WorkingTreeNotCleanError
Exception raised when a working tree contains changes to tracked files.

Raised by ensure_clean() when it encounters a repository whose local working tree contains changes to
tracked files.

2.1. API documentation 39

https://docs.python.org/2/reference/compound_stmts.html#except

vcs-repo-mgr, Release 4.2

exception vcs_repo_mgr.exceptions.MergeConflictError
Exception raised when a merge results in merge conflicts.

Raised by merge() when it performs a merge that results in merge conflicts.

exception vcs_repo_mgr.exceptions.MissingWorkingTreeError
Exception raised when working tree support is required but missing.

Raised by ensure_working_tree() when it finds that the local repository doesn’t support a working tree.

40 Chapter 2. API documentation

CHAPTER 3

Change log

The change log lists notable changes to the project:

3.1 Changelog

The purpose of this document is to list all of the notable changes to this project. The format was inspired by Keep a
Changelog. This project adheres to semantic versioning.

• Release 4.2 (2018-04-26)

• Release 4.1.3 (2018-03-28)

• Release 4.1.2 (2018-03-28)

• Release 4.1.1 (2018-03-08)

• Release 4.1 (2018-03-08)

• Release 4.0 (2018-03-05)

• Release 3.0 (2018-03-05)

• Release 2.0.1 (2017-08-02)

• Release 2.0 (2017-07-14)

• Release 1.0 (2017-07-03)

• Release 0.34 (2017-04-29)

• Release 0.33.1 (2016-11-30)

• Release 0.33 (2016-10-26)

• Release 0.32.1 (2016-08-04)

• Release 0.32 (2016-04-20)

41

http://keepachangelog.com/
http://keepachangelog.com/
http://semver.org/

vcs-repo-mgr, Release 4.2

• Release 0.31 (2016-04-20)

• Release 0.30 (2016-03-18)

• Release 0.29 (2016-03-18)

• Release 0.28 (2016-03-18)

• Release 0.27.2 (2016-03-18)

• Release 0.27.1 (2016-03-18)

• Release 0.27 (2016-03-16)

• Release 0.26.1 (2016-03-16)

• Release 0.26 (2016-03-16)

• Release 0.25 (2016-03-16)

• Release 0.24.1 (2016-03-16)

• Release 0.24 (2016-03-16)

• Release 0.23.1 (2016-03-16)

• Release 0.23 (2016-03-16)

• Release 0.22.3 (2016-03-16)

• Release 0.22.2 (2016-03-16)

• Release 0.22.1 (2016-03-16)

• Release 0.22 (2016-03-16)

• Release 0.21 (2016-03-16)

• Release 0.20.1 (2016-03-16)

• Release 0.20 (2016-03-16)

• Release 0.19 (2016-03-16)

• Release 0.18.2 (2016-03-15)

• Release 0.18.1 (2016-03-15)

• Release 0.18 (2016-03-15)

• Release 0.17 (2016-03-15)

• Release 0.16 (2016-03-15)

• Release 0.15.1 (2015-08-19)

• Release 0.15 (2015-06-25)

• Release 0.14 (2015-05-08)

• Release 0.13 (2015-05-08)

• Release 0.12 (2015-03-16)

• Release 0.11 (2015-03-16)

• Release 0.10 (2015-02-19)

• Release 0.9 (2015-02-19)

42 Chapter 3. Change log

vcs-repo-mgr, Release 4.2

• Release 0.8 (2015-02-19)

• Release 0.7 (2014-11-02)

• Release 0.6.4 (2014-09-14)

• Release 0.6.3 (2014-09-14)

• Release 0.6.2 (2014-09-14)

• Release 0.6.1 (2014-09-14)

• Release 0.6 (2014-09-14)

• Release 0.5 (2014-09-14)

• Release 0.4 (2014-06-25)

• Release 0.3.2 (2014-06-22)

• Release 0.3.1 (2014-06-22)

• Release 0.3 (2014-06-19)

• Release 0.2.4 (2014-05-31)

• Release 0.2.3 (2014-05-11)

• Release 0.2.2 (2014-05-11)

• Release 0.2.1 (2014-05-10)

• Release 0.2 (2014-05-10)

• Release 0.1.5 (2014-05-05)

• Release 0.1.4 (2014-05-05)

• Release 0.1.3 (2014-05-04)

• Release 0.1.2 (2014-05-04)

• Release 0.1.1 (2014-05-04)

• Release 0.1 (2014-05-04)

3.1.1 Release 4.2 (2018-04-26)

• Added this changelog.

• Added license key to setup script.

3.1.2 Release 4.1.3 (2018-03-28)

Bug fix: Restore support for exporting to directories with relative pathnames.

3.1.3 Release 4.1.2 (2018-03-28)

Bug fix: Make sure update_context() is called before is_bare() is invoked.

3.1. Changelog 43

vcs-repo-mgr, Release 4.2

3.1.4 Release 4.1.1 (2018-03-08)

Bug fix: Resolve issue #5 by expanding remote git branch names to be unambiguous.

3.1.5 Release 4.1 (2018-03-08)

• Bug fix: Resolve issue #4 by implementing a new approach to “git branch name discovery” (that works
equally well for local branches as it does for remote branches) by switching from git branch --list
--verbose to git for-each-ref.

• Document MacOS compatibility, run MacOS tests on Travis CI. While I never specifically intended for vcs-
repo-mgr to be used on Apple systems, a colleague of mine has been trying to do exactly this and has run into a
number of issues that are probably caused by platform incompatibilities in vcs-repo-mgr and/or its dependencies.

3.1.6 Release 4.0 (2018-03-05)

• Backwards incompatible: Force internal merge tool for Mercurial. After isolating the test suite from $HOME my
~/.hgrc was ignored and the following setting disappeared:

[ui]
merge = internal:merge

Then I ran the vcs-repo-mgr test suite and meld popped up. Not what I was expecting from an automated test
suite! Although it seems unlikely to me that someone would depend on the old behavior the introduction of hg
--config ui.merge=internal:merge is backwards incompatible and version numbers are cheap, so
I’m bumping the major version number :-).

I do think the new behavior is a better default for the Mercurial backend given the focus of vcs-repo-mgr on
automation, if only to make this backend match the behavior of the other backends.

• Isolate the test suite from $HOME. I recently added the following to my ~/.gitconfig:

[commit]
gpgsign = true

Then I ran the vcs-repo-mgr test suite and I was not amused :-P. This should fix the underlying more generic
issue.

3.1.7 Release 3.0 (2018-03-05)

• Backwards incompatible: Raise an exception when a working tree is required but missing. This change is
technically backwards incompatible in more than one way:

1. Requiring subclasses to implement the supports_working_tree property breaks external subclasses
(outside of my control).

2. The new exception previously wasn’t there and would never be raised, but then all of the affected operations
(requiring a working tree) would likely end in an external command failure.

For what it’s worth: I don’t expect these changes to bite any real life use cases.

• Merged pull request #3 to improve MacOS compatibility (by replacing mkdir --parents with mkdir
-p).

• Starting from this release the files needed to generate documentation are included in source distributions.

44 Chapter 3. Change log

https://github.com/xolox/python-vcs-repo-mgr/issues/5
https://github.com/xolox/python-vcs-repo-mgr/issues/4
https://github.com/xolox/python-vcs-repo-mgr/pulls/3

vcs-repo-mgr, Release 4.2

• Moved the coerce_pattern() function to the humanfriendly package (because I wanted to be able to use
it in qpass as well).

3.1.8 Release 2.0.1 (2017-08-02)

Bug fix: Ignore untracked files in HgRepo.commit().

3.1.9 Release 2.0 (2017-07-14)

Various changes to merge_up():

• Automatically create release branches.

• Skip merging up when target branch is default branch.

• Bug fix: Don’t delete or close non-feature-branches.

3.1.10 Release 1.0 (2017-07-03)

Major rewrite: Named remotes, selective pushing, init support, etc.

Brain dump of changes:

• What triggered me to start on a major rewrite was that I’d gotten fed up with the current (horrible) test suite
because it depends on the cloning of remote public repositories which makes it slow and fragile. To underline
why it is fragile:

I only know of one place to find public Bazaar repositories which is Launchpad.net, however cloning a Bazaar
repository from Launchpad fails more often than it works. Recently the ‘more often’ turned into always and the
test coverage of the Bazaar support in vcs-repo-mgr basically disappeared, without any action from me :-(.

To improve the test suite I wanted to add support for bzr init, git init and hg init. However that
would have made the code even uglier than it already was and so the rewrite was triggered :-).

Support for init has been added, by the way :-P. I’ve also added support for creating tags, otherwise I wouldn’t
have been able to test the support for tags :-).

After the rewrite I also rewrote the test suite, it’s a completely different beast now. Stil slow, but much more
robust and with quicker feedback about individual tests.

• The push() and pull() methods can work with specific revisions and merge_up() has been changed to
pull a specific revision (the feature branch that it merges in).

• The API between the Repository superclass and the subclasses that implement support for a specific version
control system has been changed completely, in various backwards incompatible ways.

• The new API enables introspection of ‘remotes’ (the repositories from which you clone/pull and the reposito-
ries that you push to) which enables pull() to know whether a ‘default remote’ is configured for any given
repository.

• The new API has a class to represent commit authors, enabling less ad-hoc communication between the super-
class, its subclasses and callers.

• In the process of rewriting everything I’ve switched to using execution contexts created by executor.
contexts, this enables me to configure the working directory in two places instead of having to repeat the
same thing in a hundred different places. This change also gives callers much more control over how external
commands are executed (so much control that you can in theory run the commands on a remote system over
SSH without having a version control system installed on your local system :-P).

3.1. Changelog 45

https://humanfriendly.readthedocs.io/
https://qpass.readthedocs.io/

vcs-repo-mgr, Release 4.2

• Support for specific version control systems has been extracted from the main vcs_repo_mgr module into
separate modules under the vcs_repo_mgr.backends namespace. The modules in the backends names-
pace are loaded on demand.

3.1.11 Release 0.34 (2017-04-29)

• Improved the command line interface.

• Added Python 3.6 to tested Python versions.

• Refactored makefile (and Travis CI and Tox configs).

3.1.12 Release 0.33.1 (2016-11-30)

Update stdeb.cfg from setup.py (to avoid duplicate dependencies).

3.1.13 Release 0.33 (2016-10-26)

• Support for pushing between repositories.

• Started publishing wheel distributions.

• Improved documentation on raised exceptions.

• Improved logging in Repository.update().

• Droped support for PyPy (refer to readme changes for details).

3.1.14 Release 0.32.1 (2016-08-04)

• Refactor setup script to fix issue #2 (UnicodeDecodeError in setup.py on Python 3).

• Run test suite on Travis CI under PyPy as well (works for me with tox :-)

3.1.15 Release 0.32 (2016-04-20)

Enable feature branch customization for merge_up().

3.1.16 Release 0.31 (2016-04-20)

Support for interactive merge conflict resolution.

3.1.17 Release 0.30 (2016-03-18)

Added a command line interface for the merge_up() functionality.

3.1.18 Release 0.29 (2016-03-18)

Make it possible to merge changes up through release branches.

46 Chapter 3. Change log

https://github.com/xolox/python-vcs-repo-mgr/issues/2

vcs-repo-mgr, Release 4.2

3.1.19 Release 0.28 (2016-03-18)

Make it possible to add new files to repositories.

3.1.20 Release 0.27.2 (2016-03-18)

Bug fix for previous commit (concerning the hg remove --after return code).

3.1.21 Release 0.27.1 (2016-03-18)

Run hg remove --after before hg commit.

3.1.22 Release 0.27 (2016-03-16)

Expose the name of the currently checked out branch.

3.1.23 Release 0.26.1 (2016-03-16)

Bug fix for hg command invocations, refer to the following Travis CI build failure for details: https://travis-ci.org/
xolox/python-vcs-repo-mgr/jobs/116499864.

3.1.24 Release 0.26 (2016-03-16)

Make it possible to delete merged branches.

3.1.25 Release 0.25 (2016-03-16)

• Automatic Repository subclass registration using metaclasses.

• Move aliases from repository_factory() to Repository subclasses.

• Transform the vcs_directory and exists properties into static methods.

• Make repository_factory() a bit more flexible.

• Make coerce_repository() infer VCS types from local directories

3.1.26 Release 0.24.1 (2016-03-16)

Bug fix for unattended git merge support.

3.1.27 Release 0.24 (2016-03-16)

Make it possible to merge between branches.

3.1.28 Release 0.23.1 (2016-03-16)

Switch from git diff to git diff HEAD (see the inline documentation for more details).

3.1. Changelog 47

https://travis-ci.org/xolox/python-vcs-repo-mgr/jobs/116499864
https://travis-ci.org/xolox/python-vcs-repo-mgr/jobs/116499864

vcs-repo-mgr, Release 4.2

3.1.29 Release 0.23 (2016-03-16)

Make it possible to create new branches.

3.1.30 Release 0.22.3 (2016-03-16)

• Start using the @lazy_property decorator.

• Bug fix for git commit message author handling.

• Stop Travis CI from launching builds for tags.

3.1.31 Release 0.22.2 (2016-03-16)

A bug fix for the test suite.

3.1.32 Release 0.22.1 (2016-03-16)

Improve handling of commit authors.

The general idea behind the new implementation is to reconcile two opposing forces:

• Don’t rely on configuration files (I’m building a Python API after all).

• Respect the values in configuration files when available (because of the Do What I Mean aspect).

3.1.33 Release 0.22 (2016-03-16)

• Make it possible to commit changes.

• Add Python 3.5 to supported versions.

3.1.34 Release 0.21 (2016-03-16)

Make it possible to override the remote for create() and update() calls.

3.1.35 Release 0.20.1 (2016-03-16)

Fixed a Python 3 incompatibility in the test suite.

3.1.36 Release 0.20 (2016-03-16)

Enable updating of the working tree to different revisions.

3.1.37 Release 0.19 (2016-03-16)

• Start switching to property-manager.

• Force Read the Docs to install with pip instead of python setup.py install.

48 Chapter 3. Change log

https://property-manager.readthedocs.io/

vcs-repo-mgr, Release 4.2

3.1.38 Release 0.18.2 (2016-03-15)

Enable bare=None in find_configured_repository().

3.1.39 Release 0.18.1 (2016-03-15)

• Make preference for (non-)bare repositories more flexible.

• Give readme & documentation some much needed love.

3.1.40 Release 0.18 (2016-03-15)

Make it possible to check whether a working tree is clean.

3.1.41 Release 0.17 (2016-03-15)

Enable clones with working trees (non-bare clones).

3.1.42 Release 0.16 (2016-03-15)

• Make it possible to check for bare checkouts

• Document existing CONSTANTS, make known_release_schemes a documented constant as well.

• Implement and enforce PEP-8 and PEP-257 compliance.

3.1.43 Release 0.15.1 (2015-08-19)

Bug fix: Make sure git fetch always updates local branches.

To be honest I’m not sure why I never ran into this before, I’ve been using this functionality for months and updates
always came in just fine based on the same version of git. Nevertheless the new git fetch command is the proper,
documented way to do what I want git to do so here we go :-).

Detailed explanation: http://stackoverflow.com/a/10697486

3.1.44 Release 0.15 (2015-06-25)

• Expand ~/ and $HOME in configuration file (issue #1).

• Improve documentation of find_configured_repository().

• Improve documentation on how limit_vcs_updates works.

3.1.45 Release 0.14 (2015-05-08)

• Move exceptions to separate module.

• Various documentation improvements.

3.1. Changelog 49

http://stackoverflow.com/a/10697486
https://github.com/xolox/python-vcs-repo-mgr/issues/1

vcs-repo-mgr, Release 4.2

3.1.46 Release 0.13 (2015-05-08)

Shortcuts to translate release identifiers to branches/tags (also got test coverage back up to +/- 97%).

3.1.47 Release 0.12 (2015-03-16)

Expose release specific functionality in CLI (listing & selection).

3.1.48 Release 0.11 (2015-03-16)

• Expose release selection in CLI (similar to revision selection).

• Fix RST format typo in find_configured_repository() docstring.

3.1.49 Release 0.10 (2015-02-19)

• Don’t construct duplicate Repository objects (when possible to avoid).

• Improve argument validation in Repository initializer.

• Move autovivification of local clones to Repository initializer.

• make install should install ‘dynamic dependencies’ as well.

3.1.50 Release 0.9 (2015-02-19)

Changed release querying API, added “release selection” API.

3.1.51 Release 0.8 (2015-02-19)

Experimental support for “releases” (can be based on tags or branches).

3.1.52 Release 0.7 (2014-11-02)

Auto vivification of VCS repositories.

3.1.53 Release 0.6.4 (2014-09-14)

Support for generating Debian control file Vcs-* fields.

3.1.54 Release 0.6.3 (2014-09-14)

Another bug fix for Python 3.x compatibility in test suite.

3.1.55 Release 0.6.2 (2014-09-14)

Bug fix to make test suite compatible with Python 3.x. See https://travis-ci.org/xolox/python-vcs-repo-mgr/jobs/
35273703.

50 Chapter 3. Change log

https://travis-ci.org/xolox/python-vcs-repo-mgr/jobs/35273703
https://travis-ci.org/xolox/python-vcs-repo-mgr/jobs/35273703

vcs-repo-mgr, Release 4.2

3.1.56 Release 0.6.1 (2014-09-14)

Support for summing revision numbers from multiple repositories.

3.1.57 Release 0.6 (2014-09-14)

Support for Bazaar repositories.

3.1.58 Release 0.5 (2014-09-14)

Support for tags (also rewrote the test suite and increased test coverage).

3.1.59 Release 0.4 (2014-06-25)

Rename limit_repo_updates to limit_vcs_updates (backwards incompatible).

3.1.60 Release 0.3.2 (2014-06-22)

Try to unbreak Python 3.x tests on Travis CI.

3.1.61 Release 0.3.1 (2014-06-22)

Bug fix for ‘rate limiting’ of repository updates.

3.1.62 Release 0.3 (2014-06-19)

Support ‘rate limiting’ of repository updates.

3.1.63 Release 0.2.4 (2014-05-31)

• Change Mercurial from Debian dependency to Python dependency.

• Improve test coverage by testing command line interface.

3.1.64 Release 0.2.3 (2014-05-11)

• Automatically create local repositories on the first run.

• Bump humanfriendly requirement due to Python 3 compatibility.

3.1.65 Release 0.2.2 (2014-05-11)

Removed dead code and increased test coverage.

3.1. Changelog 51

vcs-repo-mgr, Release 4.2

3.1.66 Release 0.2.1 (2014-05-10)

• Bug fix for Revision.revision_number.

• Improved test coverage, started using Coveralls.io.

3.1.67 Release 0.2 (2014-05-10)

• Document supported Python versions (2.6, 2.7 & 3.4).

• Switch git clone in tests to use HTTPS instead of SSH

• Start using Travis CI.

3.1.68 Release 0.1.5 (2014-05-05)

Bug fix: Include stdeb.cfg in source distributions (via MANIFEST.in).

3.1.69 Release 0.1.4 (2014-05-05)

• Document the dependency on git and hg executables.

• Document dependencies on Debian system packages in stdeb.cfg.

3.1.70 Release 0.1.3 (2014-05-04)

Add the usage message of the vcs-tool program to the documentation.

3.1.71 Release 0.1.2 (2014-05-04)

Added support for vcs-tool --find-directory option.

3.1.72 Release 0.1.1 (2014-05-04)

Bug fix: Added missing humanfriendly dependency.

3.1.73 Release 0.1 (2014-05-04)

The initial commit with support for cloning repositories, pulling updates, exporting revisions, querying revision ids
and numbers for Git and Mercurial repositories.

52 Chapter 3. Change log

Python Module Index

v
vcs_repo_mgr, 9
vcs_repo_mgr.backends, 30
vcs_repo_mgr.backends.bzr, 30
vcs_repo_mgr.backends.git, 32
vcs_repo_mgr.backends.hg, 35
vcs_repo_mgr.cli, 37
vcs_repo_mgr.exceptions, 39

53

vcs-repo-mgr, Release 4.2

54 Python Module Index

Index

Symbols
__enter__() (vcs_repo_mgr.limit_vcs_updates method),

13
__exit__() (vcs_repo_mgr.limit_vcs_updates method), 13
__init__() (vcs_repo_mgr.Repository method), 20
__init__() (vcs_repo_mgr.RepositoryMeta method), 14

A
add_files() (vcs_repo_mgr.Repository method), 20
ALIASES (vcs_repo_mgr.Repository attribute), 14
AmbiguousRepositoryNameError, 39
Author (class in vcs_repo_mgr), 13
author (vcs_repo_mgr.Repository attribute), 15

B
bare (vcs_repo_mgr.Repository attribute), 15
branch (vcs_repo_mgr.Revision attribute), 29
branches (vcs_repo_mgr.Repository attribute), 16
BUNDLED_BACKENDS (in module vcs_repo_mgr), 11
BzrRepo (class in vcs_repo_mgr.backends.bzr), 30

C
checkout() (vcs_repo_mgr.Repository method), 20
coerce_author() (in module vcs_repo_mgr), 11
coerce_feature_branch() (in module vcs_repo_mgr), 11
coerce_repository() (in module vcs_repo_mgr), 11
combined (vcs_repo_mgr.Author attribute), 13
commit() (vcs_repo_mgr.Repository method), 20
compiled_filter (vcs_repo_mgr.Repository attribute), 16
contains_repository() (vcs_repo_mgr.backends.bzr.BzrRepo

class method), 30
contains_repository() (vcs_repo_mgr.backends.git.GitRepo

class method), 32
contains_repository() (vcs_repo_mgr.Repository class

method), 15
context (vcs_repo_mgr.Repository attribute), 16
control_field (vcs_repo_mgr.backends.bzr.BzrRepo at-

tribute), 30

control_field (vcs_repo_mgr.backends.git.GitRepo
attribute), 33

control_field (vcs_repo_mgr.backends.hg.HgRepo
attribute), 35

control_field (vcs_repo_mgr.Repository attribute), 16
create() (vcs_repo_mgr.Repository method), 20
create_branch() (vcs_repo_mgr.Repository method), 21
create_release_branch() (vcs_repo_mgr.Repository

method), 21
create_tag() (vcs_repo_mgr.Repository method), 21
current_branch (vcs_repo_mgr.backends.git.GitRepo at-

tribute), 33
current_branch (vcs_repo_mgr.backends.hg.HgRepo at-

tribute), 35
current_branch (vcs_repo_mgr.Repository attribute), 17

D
default (vcs_repo_mgr.Remote attribute), 28
default_pull_remote (vcs_repo_mgr.Repository at-

tribute), 17
default_push_remote (vcs_repo_mgr.Repository at-

tribute), 17
default_revision (vcs_repo_mgr.backends.bzr.BzrRepo

attribute), 31
default_revision (vcs_repo_mgr.backends.git.GitRepo at-

tribute), 33
default_revision (vcs_repo_mgr.backends.hg.HgRepo at-

tribute), 35
default_revision (vcs_repo_mgr.Repository attribute), 17
delete_branch() (vcs_repo_mgr.Repository method), 21

E
email (vcs_repo_mgr.Author attribute), 13
ensure_clean() (vcs_repo_mgr.Repository method), 21
ensure_exists() (vcs_repo_mgr.Repository method), 21
ensure_hexadecimal_string() (vcs_repo_mgr.Repository

method), 21
ensure_release_scheme() (vcs_repo_mgr.Repository

method), 22

55

vcs-repo-mgr, Release 4.2

ensure_working_tree() (vcs_repo_mgr.Repository
method), 22

exists (vcs_repo_mgr.Repository attribute), 17
expand_branch_name() (vcs_repo_mgr.backends.git.GitRepo

method), 34
export() (vcs_repo_mgr.Repository method), 22
expression (vcs_repo_mgr.FeatureBranchSpec attribute),

13

F
FeatureBranchSpec (class in vcs_repo_mgr), 13
find_author() (vcs_repo_mgr.backends.bzr.BzrRepo

method), 31
find_author() (vcs_repo_mgr.backends.git.GitRepo

method), 34
find_author() (vcs_repo_mgr.backends.hg.HgRepo

method), 36
find_author() (vcs_repo_mgr.Repository method), 22
find_branches() (vcs_repo_mgr.backends.bzr.BzrRepo

method), 31
find_branches() (vcs_repo_mgr.backends.git.GitRepo

method), 34
find_branches() (vcs_repo_mgr.backends.hg.HgRepo

method), 36
find_branches() (vcs_repo_mgr.Repository method), 22
find_branches_raw() (vcs_repo_mgr.backends.git.GitRepo

method), 34
find_cache_directory() (in module vcs_repo_mgr), 11
find_configured_repository() (in module vcs_repo_mgr),

12
find_remote() (vcs_repo_mgr.Repository method), 22
find_revision_id() (vcs_repo_mgr.backends.bzr.BzrRepo

method), 31
find_revision_id() (vcs_repo_mgr.backends.git.GitRepo

method), 34
find_revision_id() (vcs_repo_mgr.backends.hg.HgRepo

method), 36
find_revision_id() (vcs_repo_mgr.Repository method),

23
find_revision_number() (vcs_repo_mgr.backends.bzr.BzrRepo

method), 31
find_revision_number() (vcs_repo_mgr.backends.git.GitRepo

method), 34
find_revision_number() (vcs_repo_mgr.backends.hg.HgRepo

method), 36
find_revision_number() (vcs_repo_mgr.Repository

method), 23
find_tags() (vcs_repo_mgr.backends.bzr.BzrRepo

method), 32
find_tags() (vcs_repo_mgr.backends.git.GitRepo

method), 34
find_tags() (vcs_repo_mgr.backends.hg.HgRepo

method), 36
find_tags() (vcs_repo_mgr.Repository method), 22

friendly_name (vcs_repo_mgr.backends.bzr.BzrRepo at-
tribute), 31

friendly_name (vcs_repo_mgr.backends.git.GitRepo at-
tribute), 33

friendly_name (vcs_repo_mgr.backends.hg.HgRepo at-
tribute), 35

friendly_name (vcs_repo_mgr.Repository attribute), 17

G
generate_control_field() (vcs_repo_mgr.Repository

method), 23
get_add_files_command()

(vcs_repo_mgr.backends.bzr.BzrRepo
method), 32

get_add_files_command()
(vcs_repo_mgr.backends.git.GitRepo method),
34

get_add_files_command()
(vcs_repo_mgr.backends.hg.HgRepo method),
36

get_add_files_command() (vcs_repo_mgr.Repository
method), 23

get_checkout_command()
(vcs_repo_mgr.backends.git.GitRepo method),
34

get_checkout_command()
(vcs_repo_mgr.backends.hg.HgRepo method),
36

get_checkout_command() (vcs_repo_mgr.Repository
method), 23

get_commit_command() (vcs_repo_mgr.backends.bzr.BzrRepo
method), 32

get_commit_command() (vcs_repo_mgr.backends.git.GitRepo
method), 34

get_commit_command() (vcs_repo_mgr.backends.hg.HgRepo
method), 36

get_commit_command() (vcs_repo_mgr.Repository
method), 24

get_create_branch_command()
(vcs_repo_mgr.backends.git.GitRepo method),
34

get_create_branch_command()
(vcs_repo_mgr.backends.hg.HgRepo method),
36

get_create_branch_command()
(vcs_repo_mgr.Repository method), 24

get_create_command() (vcs_repo_mgr.backends.bzr.BzrRepo
method), 32

get_create_command() (vcs_repo_mgr.backends.git.GitRepo
method), 34

get_create_command() (vcs_repo_mgr.backends.hg.HgRepo
method), 37

get_create_command() (vcs_repo_mgr.Repository
method), 24

56 Index

vcs-repo-mgr, Release 4.2

get_create_tag_command()
(vcs_repo_mgr.backends.bzr.BzrRepo
method), 32

get_create_tag_command()
(vcs_repo_mgr.backends.git.GitRepo method),
34

get_create_tag_command()
(vcs_repo_mgr.backends.hg.HgRepo method),
36

get_create_tag_command() (vcs_repo_mgr.Repository
method), 24

get_delete_branch_command()
(vcs_repo_mgr.backends.git.GitRepo method),
34

get_delete_branch_command()
(vcs_repo_mgr.backends.hg.HgRepo method),
37

get_delete_branch_command()
(vcs_repo_mgr.Repository method), 24

get_export_command() (vcs_repo_mgr.backends.bzr.BzrRepo
method), 32

get_export_command() (vcs_repo_mgr.backends.git.GitRepo
method), 34

get_export_command() (vcs_repo_mgr.backends.hg.HgRepo
method), 37

get_export_command() (vcs_repo_mgr.Repository
method), 24

get_merge_command() (vcs_repo_mgr.backends.git.GitRepo
method), 34

get_merge_command() (vcs_repo_mgr.backends.hg.HgRepo
method), 37

get_merge_command() (vcs_repo_mgr.Repository
method), 25

get_pull_command() (vcs_repo_mgr.backends.bzr.BzrRepo
method), 32

get_pull_command() (vcs_repo_mgr.backends.git.GitRepo
method), 34

get_pull_command() (vcs_repo_mgr.backends.hg.HgRepo
method), 37

get_pull_command() (vcs_repo_mgr.Repository
method), 25

get_push_command() (vcs_repo_mgr.backends.bzr.BzrRepo
method), 32

get_push_command() (vcs_repo_mgr.backends.git.GitRepo
method), 35

get_push_command() (vcs_repo_mgr.backends.hg.HgRepo
method), 37

get_push_command() (vcs_repo_mgr.Repository
method), 25

get_vcs_directory() (vcs_repo_mgr.backends.bzr.BzrRepo
static method), 30

get_vcs_directory() (vcs_repo_mgr.backends.git.GitRepo
static method), 33

get_vcs_directory() (vcs_repo_mgr.backends.hg.HgRepo

static method), 35
get_vcs_directory() (vcs_repo_mgr.Repository static

method), 15
GitRepo (class in vcs_repo_mgr.backends.git), 32

H
HEX_PATTERN (in module vcs_repo_mgr), 11
HgRepo (class in vcs_repo_mgr.backends.hg), 35

I
identifier (vcs_repo_mgr.Release attribute), 28
interactive_merge_conflict_handler()

(vcs_repo_mgr.Repository method), 25
is_bare (vcs_repo_mgr.backends.bzr.BzrRepo attribute),

31
is_bare (vcs_repo_mgr.backends.git.GitRepo attribute),

33
is_bare (vcs_repo_mgr.backends.hg.HgRepo attribute),

36
is_bare (vcs_repo_mgr.Repository attribute), 17
is_clean (vcs_repo_mgr.backends.bzr.BzrRepo attribute),

31
is_clean (vcs_repo_mgr.backends.git.GitRepo attribute),

33
is_clean (vcs_repo_mgr.backends.hg.HgRepo attribute),

36
is_clean (vcs_repo_mgr.Repository attribute), 17
is_feature_branch() (vcs_repo_mgr.Repository method),

25

K
KNOWN_RELEASE_SCHEMES (in module

vcs_repo_mgr), 10
known_remotes (vcs_repo_mgr.backends.bzr.BzrRepo

attribute), 31
known_remotes (vcs_repo_mgr.backends.git.GitRepo at-

tribute), 33
known_remotes (vcs_repo_mgr.backends.hg.HgRepo at-

tribute), 36
known_remotes (vcs_repo_mgr.Repository attribute), 17

L
last_updated (vcs_repo_mgr.Repository attribute), 17
last_updated_file (vcs_repo_mgr.Repository attribute), 17
limit_vcs_updates (class in vcs_repo_mgr), 13
load_backends() (in module vcs_repo_mgr), 12
local (vcs_repo_mgr.Repository attribute), 18
location (vcs_repo_mgr.FeatureBranchSpec attribute), 14
location (vcs_repo_mgr.Remote attribute), 28

M
main() (in module vcs_repo_mgr.cli), 39
mark_updated() (vcs_repo_mgr.Repository method), 25

Index 57

vcs-repo-mgr, Release 4.2

merge() (vcs_repo_mgr.Repository method), 25
merge_conflict_handler (vcs_repo_mgr.Repository

attribute), 26
merge_conflicts (vcs_repo_mgr.backends.git.GitRepo at-

tribute), 34
merge_conflicts (vcs_repo_mgr.backends.hg.HgRepo at-

tribute), 36
merge_conflicts (vcs_repo_mgr.Repository attribute), 18
merge_up() (vcs_repo_mgr.Repository method), 26
MergeConflictError, 39
MissingWorkingTreeError, 40

N
name (vcs_repo_mgr.Author attribute), 13
name (vcs_repo_mgr.Remote attribute), 28
NoMatchingReleasesError, 39
normalize_name() (in module vcs_repo_mgr), 12
NoSuchRepositoryError, 39

O
ordered_branches (vcs_repo_mgr.Repository attribute),

18
ordered_releases (vcs_repo_mgr.Repository attribute), 18
ordered_tags (vcs_repo_mgr.Repository attribute), 18

P
print_directory() (in module vcs_repo_mgr.cli), 39
print_releases() (in module vcs_repo_mgr.cli), 39
print_revision_id() (in module vcs_repo_mgr.cli), 39
print_revision_number() (in module vcs_repo_mgr.cli),

39
print_selected_release() (in module vcs_repo_mgr.cli), 39
print_summed_revisions() (in module vcs_repo_mgr.cli),

39
print_vcs_control_field() (in module vcs_repo_mgr.cli),

39
pull() (vcs_repo_mgr.Repository method), 26
push() (vcs_repo_mgr.Repository method), 27

R
Release (class in vcs_repo_mgr), 27
release_branches (vcs_repo_mgr.Repository attribute), 18
release_filter (vcs_repo_mgr.Repository attribute), 18
release_scheme (vcs_repo_mgr.Repository attribute), 18
release_to_branch() (vcs_repo_mgr.Repository method),

27
release_to_tag() (vcs_repo_mgr.Repository method), 27
releases (vcs_repo_mgr.Repository attribute), 19
Remote (class in vcs_repo_mgr), 28
remote (vcs_repo_mgr.Repository attribute), 19
Repository (class in vcs_repo_mgr), 14
repository (vcs_repo_mgr.Remote attribute), 29
repository (vcs_repo_mgr.Revision attribute), 29

repository_factory() (in module vcs_repo_mgr), 12
REPOSITORY_TYPES (in module vcs_repo_mgr), 11
RepositoryMeta (class in vcs_repo_mgr), 14
repr_properties (vcs_repo_mgr.Repository attribute), 15
Revision (class in vcs_repo_mgr), 29
revision (vcs_repo_mgr.FeatureBranchSpec attribute), 14
revision (vcs_repo_mgr.Release attribute), 28
revision_id (vcs_repo_mgr.Revision attribute), 29
revision_number (vcs_repo_mgr.Revision attribute), 30
roles (vcs_repo_mgr.Remote attribute), 29

S
select_release() (vcs_repo_mgr.Repository method), 27
sum_revision_numbers() (in module vcs_repo_mgr), 13
supports_working_tree (vcs_repo_mgr.backends.bzr.BzrRepo

attribute), 31
supports_working_tree (vcs_repo_mgr.backends.git.GitRepo

attribute), 34
supports_working_tree (vcs_repo_mgr.backends.hg.HgRepo

attribute), 36
supports_working_tree (vcs_repo_mgr.Repository

attribute), 19
SYSTEM_CONFIG_FILE (in module vcs_repo_mgr), 10

T
tag (vcs_repo_mgr.Revision attribute), 30
tags (vcs_repo_mgr.Repository attribute), 19

U
UnknownRepositoryTypeError, 39
update() (vcs_repo_mgr.Repository method), 27
update_context() (vcs_repo_mgr.backends.bzr.BzrRepo

method), 32
update_context() (vcs_repo_mgr.Repository method), 27
UPDATE_VARIABLE (in module vcs_repo_mgr), 10
USER_CONFIG_FILE (in module vcs_repo_mgr), 10

V
vcs_directory (vcs_repo_mgr.Repository attribute), 20
vcs_repo_mgr (module), 9
vcs_repo_mgr.backends (module), 30
vcs_repo_mgr.backends.bzr (module), 30
vcs_repo_mgr.backends.git (module), 32
vcs_repo_mgr.backends.hg (module), 35
vcs_repo_mgr.cli (module), 37
vcs_repo_mgr.exceptions (module), 39
VcsRepoMgrError, 39

W
WorkingTreeNotCleanError, 39

58 Index

	User documentation
	vcs-repo-mgr: Version control repository manager

	API documentation
	API documentation

	Change log
	Changelog

	Python Module Index

